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Abstract

Since 1998, endogenous growthmodels have reconciled rising populations with con-
stant growth rates by positing that, as population grows, research effort is spread
over an ever wider range of goods. In such models, if the range of goods were fixed,
growth would accelerate. In fact, under standard assumptions, shrinking the range
of goods could instantaneously yield infinite output. This result is avoided only by
positing severely diminishing returns to research inputs. This has implications for
the plausibility of endogenous growth theory in its current form, as well as for the
growth impact of automation.

1 Introduction
Two schools in modern growth theory —The common understanding since Romer (1990) is
that output per person is governed in the long run by the quantity of technology, and that
technology grows due to investments in R&D. In Romer’s and other early “endogenous”
growth models (Grossman and Helpman (1991), Aghion and Howitt (1992)), the growth
rate is constant if the population is constant but increases in the population size, fixing
the share of people engaged in research. As Jones (1995) observes, however, populations
have grown greatly over the last century, and the population of researchers has grown
even more quickly, yet the growth rate has not risen. Modern growth theory offers two
approaches to reconciling these facts.

“Semi-endogenous” growth models (Jones (1995), Kortum (1997), Segerstrom (1998))
posit that as technology advances, further advances—i.e. further proportional productiv-
ity improvements—get harder to find. A constant growth rate therefore requires popu-
lation growth. With a constant population, technology growth would eventually slow.

“Second-wave endogenous” (I will write “SWE”) growth models posit instead that
technology grows exponentially with a constant or with a growing population. The idea,
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withminor variations, is that process efficiency—the quantity of a given good1 producible
with given labor and/or capital inputs—grows exponentially with constant research ef-
fort, as in a first-wave endogenous model; but when population grows, we develop more
goods, leaving research effort per good fixed. Improvements in process efficiency are
called “vertical innovations” and increases in good variety are called “horizontal innova-
tions”. Variety may or may not be desirable, so an increase to the population size may or
may not yield a level effect, but in either case it does not yield a growth effect. Likewise
exponential population growth may raise the technology growth rate from the positive
rate that obtains when the population is fixed, by adding a horizontal dimension to the
constant vertical dimension, but even if so, the result is still a constant rather than a
rising growth rate. Young (1998) introduced the SWE approach, roughly contempora-
neously with Peretto (1998), Dinopoulos and Thompson (1998), and Aghion and Howitt
(1998, ch. 12.2). Aghion, Bergeaud, Boppart and Brouillette (2025) offer its latest itera-
tion, designed to accommodate evidence from Bloom et al. (2020) that constant process
efficiency growth cannot be sustained with constant research inputs at the good level.

A challenge for the SWE approach— The literature to date has not discussed an important
challenge to the SWE approach. If the growth rate increases in research effort per good,
then since fixing the range of goods is feasible, population growth makes an ever-rising
growth rate feasible. Shrinking the range of goods allows for even faster growth, even
with a fixed population. In fact, almost every implementation of the approach yields
an “extreme inefficiency result”: that though the equilibrium growth rate is constant, as
historically observed, it is feasible to generate infinite utility and/or infinite con-
sumption in arbitrarily little time.

This point seems to have gone unremarked in part because Proposition 5 of Dinopou-
los and Thompson (1998) claims that an optimal growth path exists and can be imple-
mented with an appropriate R&D subsidy; footnote 6 of Aghion and Howitt (1998, ch.
12.2) claims that the “counterintuitive welfare result” that “the optimal number of differ-
ent products is vanishingly small” can be eliminated with a proposed tweak to the model;
and one or the other of these models closely, for our purposes, resembles all subsequent
SWE literature. As we will see, if the product range can shrink, the first claim is false and
the second is true only given severely diminishing returns to research inputs. Neverthe-
less, they seem to have closed interest in the efficiency question. No subsequent SWE
paper attempts to solve for an optimal growth path.2,3

1Or its “quality”, which is modeled as equivalent.
2Aghion et al. (2025) do solve for optimal policy under constraints.
3The point has certainly not gone unremarked simply because it (and perhaps some workaround to

it) is too well-known. None of the professors or graduate students at a recent meeting of the Stanford
growth seminar had been aware of this point, and it is at the suggestion of one of them that I have written
this. The only source of which I am aware that makes a similar point is Davidson (2021), who points out
that growth can be hyperbolic in the model of Peretto (2018) with a fixed good range under a parameter
restriction.

2



The extreme inefficiency result can be avoided by positing that vertical innovation
faces severely diminishing returns to research labor, so that in effect, a larger population
can only be employed productively in research if the range of goods widens. In particular,
to render double-exponential growth infeasible, the function from investments in process
efficiency to the rate of vertical innovation must be sublogarithmic. Young (1998) takes
this approach. In principle, the result can also more bluntly be avoided by positing that
the maximum feasible rate of vertical innovation actually decreases in population per
good. Aghion et al. (2025) make a modeling choice that sometimes has this consequence,
on inspection, though it is difficult to see how this implication could be justified.

Outline — In Section 2 I cover “research labor” models, i.e. those in which labor is the
direct input to vertical innovation. In Section 3 I cover “lab equipment” models, i.e. those
in which output is the direct input. I believe that the sections encompass every SWE
model with a distinctive feature in any way relevant to the inefficiency results.

Throughout, by reframing the models and drawing out their similarities, I hope to il-
lustrate that the tendency for SWEmodels to exhibit extreme inefficiency is not a mathe-
matical curiosity but follows directly from the central premise of the approach. If growing
variety is indeed defusing explosive growth, then if we are not careful we are liable to
conclude that slowing or shrinking variety can generate it, and the faster the better. This
conclusion is avoidable, but only by making a modeling choice with its own arguably
undesirable features.

In Section 4, I briefly evaluate the plausibility of the two conclusions compatible with
SWE growth theory: (i) that explosive growth is technologically feasible but goes unre-
alized due to market failure and (ii) that the returns to innovation diminish more quickly
than is usually appreciated. I then note that these possibilities respectively widen the
range of answers to how growth will change if production and R&D are much more fully
automated, as many technologists forecast they soon will be (Grace et al., 2024). Conclu-
sion (i) implies that the prospect of building agents that can coordinate well enough to
avoid the market failure in question—even if they are relatively few and unproductive—
constitutes a new channel throughwhich automation could yield explosive growth. Con-
clusion (ii) implies that even full automation may have relatively contained economic
impact.

2 Research labor models

2.1 Without severely diminishing returns
This section discusses inefficiency in Dinopoulos and Thompson (1998), Peretto (1998),
Peretto and Smulders (2002), and Peretto and Connolly (2007). We will start with a sim-
plification of Peretto (1998) and discuss its implications in depth, because this model is
in many ways the clearest and simplest, and the one after which subsequent literature is
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most closely patterned. We will then observe that the modifications to this model that
make each paper distinctive do not change these implications.

Benchmark: Peretto (1998) (simplified) —A representative individual has log Dixit-Stiglitz
preferences:

𝑈 = ∫

∞

0

𝑒
(𝛾−𝜌)𝑡

ln 𝑐𝑡 𝑑𝑡, 𝜌 > 𝛾 ≥ 0; (1)

𝑐𝑡 = (∫

𝑁𝑡

0

𝑐
𝜀−1
𝜀

𝑖𝑡 𝑑𝑖
)

𝜀
𝜀−1

, 𝜀 > 1, (2)

where 𝑐𝑖𝑡 ≥ 0 denotes the consumption of good 𝑖 at 𝑡, 𝑁𝑡 > 0 the range of goods available
at 𝑡, 𝜌 > 0 the discount rate, and 𝛾 ∈ [0, 𝜌) the population growth rate.

Production per person of good 𝑖 is

𝑐𝑖𝑡 = 𝐴𝑖𝑡𝐿𝑖𝑡/𝐿𝑡 , (3)

where 𝐿𝑖 ≥ 0 denotes the labor producing good 𝑖 and 𝐴𝑖 ≥ 0 denotes its productivity.4
Let 𝑠 ∈ (0, 1) denote the “research share”, i.e. the share of the population engaged in

research, so that 𝑠𝐿𝑡 is the quantity of research labor at 𝑡 and

∫

𝑁𝑡

0

𝐿𝑖𝑡𝑑𝑖 = (1 − 𝑠)𝐿𝑡

is the quantity of production labor. If𝐴𝑖𝑡 equals a constant value𝐴𝑡 for all 𝑖 ∈ [0, 𝑁𝑡], then
it is the efficient and the equilibrium outcome for production labor and consumption to
be distributed evenly across goods. Fixing 𝑠, the consumption aggregate then reduces to

𝑐𝑡 ∝ 𝐴𝑡𝑁
𝜎
𝑡 , 𝜎 ≡

1

𝜀 − 1
> 0. (4)

Assume for simplicity that this symmetry holds at time 0.
Process efficiency grows according to

�̇�𝑖𝑡 ∝ 𝐴𝑖𝑡𝑆
𝜆
𝑖𝑡 , 𝜆 > 0, (5)

where 𝑆𝑖 ≥ 0 denotes the quantity of labor doing process research on good 𝑖. Since this
is the only kind of research we will need to consider, ∫ 𝑁

0
𝑆𝑖𝑑𝑖 = 𝑠𝐿.

Result 1: Infinite utility via double-exponential growth
If we fix 𝑁 and 𝑠, so that 𝑆𝑖𝑡 grows at rate 𝛾 for all 𝑖, then �̇�𝑖𝑡/𝐴𝑖𝑡 itself grows at rate
𝛾𝜆 for all 𝑖, and 𝐴𝑡 does as well. More generally, if we fix the fraction of the population
engaged in research and allocate it evenly across the product range, symmetry gives us

�̇�𝑡 ∝ 𝐴𝑡(𝐿𝑡/𝑁𝑡)
𝜆
, (6)

4This can be found by rearranging Peretto’s equation 5 and letting 𝐴𝑖 ≡ 𝑍𝜃𝑖 .
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so that if we enforce a constant 𝑔𝑁 ≤ 𝛾 , we can sustain a path of 𝑔𝐴,𝑡 that grows expo-
nentially at rate 𝜆(𝛾 − 𝑔𝑁 ). The consumption aggregate 𝑐 thus grows asymptotically at
this double-exponential rate; i.e. ln 𝑐 asymptotically grows at rate 𝜆(𝛾 − 𝑔𝑁 ). By (1), if

𝑔𝑁 < 𝛾 −
𝜌 − 𝛾

𝜆

⟹ 𝜆(𝛾 − 𝑔𝑁 ) > 𝜌 − 𝛾 ,

the payoff is infinite.
As a corollary, if

𝜌 < 𝛾 (1 + 𝜆), (7)

the infinite payoff is achievable even without shrinking 𝑁 .
Interestingly, condition (7) lies just on the edge of the conventional parameter val-

ues 𝜆 = 1, 𝜌 ≈ 0.02, and 𝛾 ≈ 0.01. The conclusion that infinite utility is achievable
merely by banning new goods, in a Peretto (1998)-style model, is therefore sensitive to
the calibration. Nevertheless, because utility is continuous in the parameters, the weaker
conclusion that banning new goods would be immensely desirable is relatively robust.5

Note that we have not accounted for the fact that foregoing horizontal innovation
saves entry costs (and have certainly not assumed that shrinking the range of goods
would generate negative entry costs). We will ignore saved entry costs through the rest
of the paper as well.

Result 2: Infinite output in no time
The connection between double-exponential growth and what I call “extreme ineffi-
ciency” relies on the choice of log utility. If we instead use a utility function featuring
more steeply diminishing returns, it is less obvious that exponential growth given (4)–(5)
is inefficient at all. A constant, high growth rate may be preferable to one that begins
low but grows exponentially.

If we allow 𝑁 to shrink, however, (4) and (6) imply that for any 𝑇 > 0, there is a
feasible growth path with

lim
𝑡→𝑇−

𝑐𝑡 = ∞. (8)

For example, suppose the product range shrinks so that

𝑁𝑡 ∝ (𝑇 − 𝑡)
2/𝜆 for 𝑡 < 𝑇 . (9)

5The conclusion that immense utility would have been achieved by halting new product development
historically, keeping all research effort devoted to vertical innovation, is greatly strengthened if we accept
the estimate from Bloom et al. (2020) that 𝑠𝑡𝐿𝑡 has grown not by 1% but by over 4% for almost a century.
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Since 𝑇 may be arbitrarily small, assume for simplicity that 𝐿 is fixed. Substituting 1/𝑁𝑡
for 𝑆𝑖𝑡 into (5)—the “∝” allows this if we fix 𝑁𝑆𝑖—and recalling that we will have 𝐴𝑖𝑡 = 𝐴𝑡
for all 𝑖 ≤ 𝑁𝑡 , we have

�̇�𝑡 ∝ 𝐴𝑡(𝑇 − 𝑡)
−2 for 𝑡 < 𝑇 .

Solving this differential equation for 𝐴 yields

𝐴𝑡 ∝ 𝑒
𝑘 𝑡
𝑇−𝑡 , 𝑘 > 0 for 𝑡 < 𝑇 . (10)

Substituting (9) and (10) into (4) yields (8).
The model implies not only that infinite output is feasible in finite time but that it

is feasible in arbitrarily little time, and has been for as long as the model has resembled
reality. This is surely implausible, but strictly speaking it does not prove that exponential
growth is extremely inefficient for any increasing utility function. This is because, near
time 0, sufficiently rapid decreases to 𝑁 cut consumption more quickly than the not-yet-
rapid increases to 𝐴 raise it, so that 𝑐 falls temporarily before rising boundlessly near
𝑇 (and falls nearer to zero the lower 𝑇 is). Extreme inefficiency would however follow
immediately if the model were extended in either of two ways. First, we could allow
consumption to be saved and consumed later in even the most marginal way, e.g. by
introducing an unproductive form of capital with an arbitrarily high depreciation rate.
Second, we could stipulate that the economy can partition itself and instruct one part to
carry out the brief research program described above while the other part subsidizes it.

What if variety is lower-bounded?
One might reasonably object that it is infeasible to shrink the range of goods below some
𝑁 > 0. This might be because in practice goods are discrete, or because some goods
are necessary, such that the love of variety captured by a Dixit-Stiglitz aggregator only
approximates our preferences once these basic needs are met.

However, SWE models are designed to explain the stylized fact of long-run expo-
nential growth, famously documented by Kaldor (1961) as persisting since the 19th cen-
tury, so we must take it as feasible to shrink variety at least to the level that obtained
when the trend began. Use the conventional benchmarks 𝛾 = 0.01 and 𝜎 = 1/3.6
Then population—and, on an SWE account, the “good range” as measured in the rele-
vant sense—150 years ago equaled

𝑁1875/𝑁2025 = 𝑒
−0.01⋅150

≈ 22%

their current values. If output per person has grown at rate 𝑔𝐴 + 0.01/3 = 0.02, then
𝑔𝐴 ≈ 0.017 at the current ratio of population per good. Multiplying the good range by
0.22 would thus multiply output initially by 0.221/3 ≈ 0.6 but, if 𝜆 = 1, multiply 𝑔𝐴 by
1/0.22 ≈ 4.55. The growth rate would thus rise from 2% to approximately 7.7%. Even

6See e.g. Aghion et al. (2025).
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if 𝑔𝐴 stayed fixed, so that population growth did not raise 𝑔𝐴 further, output per person
would return to its initial level within 6.7 years and quadruple its initial level within 25
years.

If we accept the estimate from Bloom et al. (2020) that 𝑠𝑡𝐿𝑡 has grown not by 1%/year
but by over 4%/year at least since the 1930s, the result is starker. Supposing that variety
has grown at 4%/year since 1935, we have

𝑁1935/𝑁2025 = 𝑒
−0.043⋅90

≈ 2%.

By the calculation above, in this case we have historically seen 𝑔𝐴 = 0.02 − 0.043/3 ≈

0.57%. Cutting variety by a factor of 50 would multiply output by 0.27 but multiply 𝑔𝐴
by a factor of 50. Again, even if 𝑔𝐴 remains fixed, output per person returns to its initial
level within 2.3 years, and within 15 years it rises by a factor well over 1,000.

Even the first proposal would be highly desirable given log utility with 𝜌 = 0.02.
Remarkably, relative to constant growth at 2% per year, multiplying output by 0.6 and
raising the growth rate to 7.7% per year increases the payoff (1) by as much as a perma-
nent level effect of a factor of 167. Implementing such a radical shift to the growth path
would surely be very costly in practice, but any frictions introduced to the model must
be severe indeed to overcome this benefit. Furthermore, the rapid growth path would be
significantly more desirable if we account for the possibility of consuming goods in posi-
tive quantities after vertical innovation on them has halted, or, as noted in the discussion
of Result 2 above, if we can temporarily subsist on accumulated capital.

For the rest of the paper, for simplicity, we will not introduce a lower bound on vari-
ety. We will trust that when the inefficiency results apply to an SWE model as written,
reasonable variety-bounding constraints on the model do not overturn the conclusion
that historical growth has been drastically inefficient.

Peretto (1998) proper — The only relevant difference from the “benchmark” model is that,
in place of (5), process efficiency grows according to

�̇�𝑖𝑡 ∝ 𝐴
1−𝜓

𝑖𝑡 𝐴
𝜓

𝑡 𝑆
𝜆
𝑖𝑡 , 𝜓 ∈ (0, 1), 𝜆 > 0. (11)

𝐴𝑡 denotes a consumption-share-weighted, CES/CRS aggregate of 𝐴𝑖𝑡 across 𝑖 = 0 to 𝑁𝑡 ,
so the relationship 𝐴𝑖𝑡 = 𝐴𝑡 (𝑖 ≤ 𝑁𝑡) is maintained on the growth paths proposed in
Results 1 and 2, and (11) reduces to (5).7

It is worth emphasizing that if𝑁 shrinks, the range of goods shrinks from above. Thus
if good 𝑖 exists at time 𝑡, then good 𝑗 < 𝑖 must as well, as it does on any growth path
conventionally considered. That is, the conclusion that it is feasible to produce astronom-
ical growth by discarding products does not involve violating an implicit assumption that
simpler goods (or the knowledge needed to produce them efficiently) must be maintained
to support the production of more complex goods, or anything of that kind. We are sim-
ply assuming that if 𝑁 is small, 𝐴𝑖 (𝑖 ≤ 𝑁 ) grows as quickly as if 𝑁 had always been that

7Also, incidentally, Peretto considers only the 𝜆 = 1 case.
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small. We are following the letter of the model, and it seems hard to argue that we are
not following the spirit.

To elaborate on this point: because 𝐴 is a share-weighted average of the {𝐴𝑖}, pro-
hibiting the production of goods 𝑖 > 𝑁 really does eliminate them in the sense relevant
to (4)–(6). A modified model could posit that if a good has ever been developed, it can
drag down the productivity of pre-existing goods even after it has been abandoned, but
this would be altogether unmotivated. Peretto’s justification for including 𝐴 in the pro-
duction function for 𝐴𝑖 is that “[w]hen one firm generates a new idea to improve its own
production process, it also generates general-purpose knowledge that other firms exploit
in their own research efforts” (p. 287).

To be sure, if Peretto (1998) is to be well-motivated, the above motivation must be
incomplete. Suppose (i) the range of goods rises from 𝑁 to 𝑁 , fixing 𝐴, and then (ii) 𝐴𝑗
doubles only for 𝑗 ≤ 𝑁 . Expression (5) implies that �̇�𝑖 (𝑖 ≤ 𝑁 ) rises by less than if (ii) had
occurred alone, even though firm 𝑖 has access to knowledge produced by firms 𝑗 > 𝑁 .
Peretto does not discuss this point; he justifies making �̇�𝑖 depend on average knowledge
across firms (rather than a statistic always non-decreasing in 𝑁 ) only “so that a steady
state with constant growth is feasible” (p. 287). However Aghion and Howitt (1998, pp.
407–8) do acknowledge that an SWE model in which one firm’s technology has positive
spillovers must also allow for negative spillovers in this way, to neutralize scale, and
they offer two justifications for accepting this conclusion. First, a wider variety of goods
“makes life more complicated”. Second, it raises “thin-market transaction costs”. The
modeling result relevant here—that cutting 𝑁 allows 𝐴𝑖 (𝑖 < 𝑁 ) to grow as quickly as if
𝑁 had been low all along—is fully compatible with both arguments.

Peretto and Smulders (2002) — The only relevant difference from the benchmark is that in
place of (5) we have8

�̇�𝑖𝑡 ∝ 𝐴𝑖𝑡(

𝑁𝑡

𝑎 + 𝑁𝑡
)

𝜓

𝑆
𝜆
𝑖𝑡 , 𝜓 ∈ (0, 1), 𝜆 > 0 for 𝑁𝑡 ≥ 𝑁0 > −𝑎.

The large parenthetical term may increase or decrease in 𝑁𝑡 , depending on the sign of 𝑎
(though it is asymptotically constant as𝑁𝑡 → ∞). It is microfounded by a model in which
firms have positive spillovers on each other’s research, but the size of the spillovers de-
pends on how “far apart” the firms are in a space of technology processes, but expansions
to the number of firms may also, in a sense, so widen the spread among them that the
aggregate spillovers received by any given firm decrease.

Because the magnitude of firm 𝑗 ’s spillovers on 𝑖 does not increase as 𝑗 grows more
technologically advanced (as this would generate scale effects), it does not decrease if
we halt 𝑗 ’s technological development altogether. We may trivially fix 𝑁 itself but al-
locate consumption and research labor over the good range [0, 𝑁 𝑡] with 𝑁 𝑡 → 0. The
inefficiency results follow immediately.

8As above, this can be found by letting 𝐴𝑖 ≡ 𝑍𝜃𝑖 from the paper’s fifth equation on, and the authors
consider only the 𝜆 = 1 case. Our 𝑎 is the authors’ 𝐽0/𝛿 − 𝑁0 from their equation 19.
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Peretto and Connolly (2007) — The only relevant difference from the benchmark is that in
place of (3) we have

𝑐𝑖𝑡 = 𝐴𝑖𝑡(𝐿𝑖𝑡 − 𝑓 )/𝐿𝑡 ,

where 𝑓 > 0 denotes a fixed cost, in units of labor, that must be paid to produce each
good in a given period. Because fewer goods means fewer fixed costs, this tweak only
strengthens the inefficiency results.

Dinopoulos and Thompson (1998)—There are two relevant differences fromPeretto (1998).
First, �̇�𝑖 grows in proportion not to 𝐴𝑖 but to a simple (not share-weighted) average

of technology levels across goods:

𝐴 ≡ ∫

𝑁

0

𝐴𝑖𝑑𝑖/𝑁 . (12)

The assumption that it is feasible to shrink the range of goods, as Result 2 and in some
cases Result 1 requires, is therefore a substantive one which the paper leaves ambigu-
ous. It depends on whether, if a firm chooses to stop producing good 𝑗 and/or consumers
choose to stop consuming it, 𝑗 still “constitutes part of the product range”, such that stag-
nation in𝐴𝑗 slows the research process for goods 𝑖 < 𝑗 (though it would not have if good 𝑗
had never been invented). Following the discussion above on the implications of shrink-
ing 𝑁 , I maintain that there is no coherent motivation—and no motivation proposed in
the literature—for the idea that a nonexistent good generates negative spillovers. I will
therefore argue that on the most natural reading of the model, shrinking 𝑁 is feasible.

Second, each 𝐴𝑖 does not grow deterministically and continuously as in (5), but in
jumps that arrive stochastically with frequency proportional to 𝑆𝜆𝑖 . Because the set of
goods is a continuum, however, this stochasticity does not appear in the aggregate, and
(6) is precisely maintained.9

2.2 With severely diminishing returns
This section discusses Young (1998), the only labor-based SWE model to which the inef-
ficiency results do not apply.

The model (simplified) — The model is set in discrete time. The utility function is the
discrete-time analog to (1), paired with the standard Dixit-Stiglitz aggregator (2)–(4).
Process efficiency however is given by

𝐴𝑖𝑡 − 𝐴𝑖𝑡−1 ∝ 𝐴𝑖𝑡−1 ln(𝑆𝑖𝑡/𝑓 ) for 𝑆𝑖𝑡 ≥ 𝑓 , (13)

9See the authors’ footnote 13 and the notation following their equation 17.
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where 𝑓 is the fixed labor cost of producing the good. Note that if a good is produced at
𝑡 all, its process efficiency does not fall.10

A continuous-time analog — We will begin by considering a continuous-time analog to
the model above. This will allow us to identify how severely the returns to research
labor must diminish in order for a research-labor-based SWE model to escape extreme
inefficiency, in terms more clearly consistent with the rest of the literature.

Suppose

�̇�𝑖𝑡 = 𝑚𝐴𝑖𝑡 ln(𝑆𝑖𝑡/𝑓 ), 𝑚 > 0. (14)

Even the logarithmic research function does not always escape Result 1. The result is
now less obvious: infinite output in finite time is now unachievable, andmerely enforcing
𝑔𝑁 < 𝛾 now generates linear growth in 𝑔𝐴, so that ln 𝑐 grows quadratically rather than
exponentially. But if 𝑚 > 𝜎(𝜌 − 𝛾 ), an infinite payoff is achieved by enforcing 𝑁𝑡 ∝ 𝑒−𝑒

𝑛𝑡

for 𝑛 > 𝜌 − 𝛾 . We will work through this point because doing so will illustrate why,
given a logarithmic research function, growth cannot be faster than double-exponential.
This in turn will illustrate why, given log utility, an infinite payoff is infeasible for all
parameter values only if the research function is sublogarithmic.

Letting 𝐴 denote a (perhaps share-weighted) average of {𝐴𝑖}, and fixing 𝑆𝑖 = 1/𝑁 ,11

𝑐𝑡 ∝ 𝐴𝑡𝑁
𝜎
𝑡 ∝ 𝑒

𝜎 ln𝑁𝑡−𝑚 ∫
𝑡

0
ln𝑁𝜏 𝑑𝜏 .

For the exponent to grow at least exponentially, its derivative

𝜎 ̇ln𝑁𝑡 − 𝑚 ln𝑁𝑡 (15)

must also. If − ln𝑁 grows superexponentially, ̇ln𝑁 grows more quickly in absolute
value and (15) tends to negative infinity. If it grows subexponentially, 𝐴 is not double-
exponential. The fastest growth path is therefore double-exponential. This is achievable
if ln𝑁 grows exponentially at rate 𝑛 < 𝑚/𝜎, so that (15) grows like

(𝑚 − 𝜎𝑛)( − ln𝑁𝑡) > 0.

Infinite utility is therefore achievable, given a logarithmic utility function, iff 𝛾−𝜌 < 𝑚/𝜎.

Efficiency in the Young model — The Young model proper avoids extreme inefficiency for
all parameter values because the discreteness of time amplifies the diminishing returns.

10Beyond rearranging the expression of the model, we have simplified it by (i) eliminating a constant
(the original would have ...(ln(𝑆𝑖𝑡/𝑓 ) − 𝜇) for 𝑆𝑖𝑡 ≥ 𝑓 𝑒𝜇), (ii) using 𝐴𝑖𝑡−1 in place of Young’s “𝜆𝑖(max)”
construction, and relatedly (iii) removing the possibility of choosing 𝐴𝑖𝑡 < “𝜆(𝑡 −1)”. These simplifications
have no bearing on how shrinking variety fails to deliver infinite utility or output.

11That is, we are normalizing the initial research population to 1 and taking no advantage of the fact
that the research population may exhibit sustained growth if 𝛾 > 0.
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Letting 𝑔𝑖𝑡 denote the instantaneous exponential growth rate of process efficiency real-
ized over the course of one period, we have

𝑒
𝑔𝑖𝑡 =

𝐴𝑖𝑡 − 𝐴𝑖𝑡−1

𝐴𝑖𝑡−1
∝ ln

(

𝑆𝑖𝑡

𝑓 )

⟹ 𝑔𝑖𝑡 ∝ ln
(
ln
(

𝑆𝑖𝑡

𝑓 ))
.

In the context of the rest of the model, this is enough to guarantee not only that expo-
nential growth is not extremely inefficient but that it is not inefficient at all. The optimal
growth rate is greater than the equilibrium growth rate—horizontal innovation keeping
𝑁 proportional to 𝐿 is supplied at the efficient rate, vertical innovation is undersupplied—
but constant (see Young’s Section IV).

The intuition for the optimality of 𝑔𝑁 = 𝛾 , given sufficiently severe diminishing
returns to research labor, is clearest if we imagine the extreme case:

�̇�𝑖𝑡

𝐴𝑖𝑡
∝

{

𝑔, 𝑆𝑖𝑡 ≥ 𝑓 ;

0, 𝑆𝑖𝑡 < 𝑓 .

3 Lab equipment models
This section discusses inefficiency in the lab equipment SWE literature: Aghion and
Howitt (1998, ch. 12.2), Howitt (1999), Howitt (2000), Peretto (2018), and Aghion et al.
(2025). On the whole, the conclusions reached in the research labor context are main-
tained. For simplicity, we will not specify preferences and focus only on how the models
generate Result 2, trusting that the applications to Result 1 are straightforward.12

Benchmark: Peretto (2018) (simplified) — Output equals

𝑌𝑡 = (∫

𝑁𝑡

0

𝑌
𝜀−1
𝜀

𝑖𝑡 𝑑𝑖
)

𝜀
𝜀−1

, 𝜀 > 1; (16)

𝑌𝑖𝑡 = 𝐴𝑖𝑡𝐿𝑖𝑡 , (17)

so that, given symmetric technology 𝐴𝑖𝑡 = 𝐴𝑡 (𝑖 ≤ 𝑁𝑡) and an efficient allocation of labor
to each good,

𝑌𝑡 = 𝐴𝑡𝑁
𝜎
𝑡 𝐿𝑡 , 𝜎 ≡

1

𝜀 − 1
> 0. (18)

As before, assume for simplicity that this symmetry holds at time 0. Assume also that
the population 𝐿 grows at rate 𝛾 ≥ 0.

12Incidentally, unlike in the research labor SWE literature, utility in consumption is not universally
assumed to be logarithmic, so double-exponential growth does not necessarily have qualitatively extreme
welfare implications.
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Process efficiency for good 𝑖 grows according to

�̇�𝑖𝑡 ∝ 𝑃𝑖𝑡 (19)

where 𝑃𝑖 denotes the rate of investment, in units of output rather than labor, into 𝑖’s
process efficiency.13

Letting 𝑃𝑖/(𝑌𝑁 ) ∈ (0, 1) be fixed and equal across 𝑖, so that the [process] research
share

𝑝 ≡ ∫

𝑁

0

𝑃𝑖𝑑𝑖/𝑌

is constant and this investment is spread equally across goods, we have

�̇�𝑡 ∝ 𝑌𝑡/𝑁𝑡 ∝ 𝐴𝑡𝑁
𝜎−1
𝑡 𝐿𝑡 . (20)

If 𝜎 < 1, then with 𝜆 ≡ 1 − 𝜎, Result 2 applies immediately.
If 𝜎 ≥ 1—i.e. 𝜀 ≤ 2—vertical innovation does not accelerate when variety shrinks. In

this case, when variety doubles, output weakly more than doubles, so even lab equipment
per good weakly increases. Variety is unambiguously desirable. Precisely for this reason,
however, the SWE mechanism for defusing superexponential growth fails. Given 𝛾 > 0,
output per person grows double-exponentially, not only on a feasible path attainable by
fixing 𝑁 but in equilibrium. For this reason, Peretto restricts his attention to the 𝜎 < 1

case.14
Note from (19) that the rate of vertical innovation is assumed to be linear in invest-

ment. That is, in the notation of the previous section, it is assumed that 𝜆 = 1. This is
because here, technology supports technological development only via the channel that
𝑌 ∝ 𝐴 and �̇�𝑖 ∝ 𝑆𝑖 ∝ 𝑌 . If the function from 𝑃𝑖 to 𝐴were not linear, the model would not
satisfy the central desideratum that, fixing 𝐿 and 𝑁 , output grows exponentially through
vertical innovation.

Peretto (2018) proper — The only relevant difference between Peretto (2018) proper and
the simplification above is that, in place of (19), he uses15

�̇�𝑖𝑡 ∝ 𝐴
𝜁

𝑖𝑡𝑃𝑖𝑡 , 𝜁 ≥ 0,

so that, fixing 𝑃𝑖/(𝑌𝑁 ) > 0,

�̇�𝑡 ∝ 𝐴
1+𝜁

𝑡 𝑁
𝜎−1
𝑡 𝐿𝑡 .

The 𝜁 > 0 case yields a result more extreme than in any model yet: even fixing rather
than shrinking 𝑁 , process efficiency and output can grow hyperbolically.

13We are using 𝐴 to denote Peretto’s “𝑍𝜅”, but here considering only the 𝜅 = 1 case. The 𝜅 > 1 case is
discussed below.

14See p. 54, especially the equivalence to the Romer model given 𝜎 ≥ 1 discussed in footnote 6.
15After the change of variables noted in footnote 13 above, our 𝜁 is Peretto’s 1 − 1/𝜅.
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With 𝜁 > 0, the desideratum that exponential growth is feasible fixing 𝐿 and 𝑁 is
compatible with exponentiating 𝑃𝑖 by 𝜆 ≥ 1 − 𝜁 . Hyperbolic growth with fixed variety
remains feasible as long as the inequality is strict, and Result 2 is maintained in any case.

Howitt (1999) — Output equals

𝑌𝑡 = ∫

𝑁𝑡

0

𝑌
1−𝜎
𝑖𝑡 𝑑𝑖, 𝜎 ∈ (0, 1);

𝑌𝑖𝑡 = 𝐴
1

1−𝜎

𝑖𝑡 𝐿𝑖𝑡 .

Given symmetric technology 𝐴𝑖 = 𝐴 (𝑖 ≤ 𝑁 ) and an efficient allocation of labor
𝐿𝑖 = 𝐿/𝑁 (𝑖 ≤ 𝑁 ), this would yield

𝑌𝑡 = 𝐴𝑡𝑁
𝜎
𝑡 𝐿

1−𝜎
𝑡 .

Implicitly, output exhibits constant returns to scale in (i) the Dixit-Stiglitz aggregate (16)
of intermediate goods 𝑖 and (ii) a fixed factor whose share coincides with 𝜎. Note that 𝐴𝑖
no longer precisely denotes 𝑖’s process efficiency, but that by construction output remains
linear in the (weighted) average 𝐴 of the {𝐴𝑖}.16

Howitt assumes that goods’ process efficiencies grow stochastically, so the {𝐴𝑖} are
not equal. As in Dinopoulos and Thompson (1998), however, the process is such that,
given equal research investment per product, the shape of the distribution is time-
invariant.17 The efficient labor allocation then maintains

∫

𝑁

0

𝑌
1−𝜎
𝑖 𝑑𝑖 ∝ 𝑁 ⋅

(
𝐴

1
1−𝜎 𝐿/𝑁

)

1−𝜎

,

and thus

𝑌𝑡 ∝ 𝐴𝑡𝑁
𝜎
𝑡 𝐿

1−𝜎
𝑡 .

As in Peretto (2018), process efficiency for good 𝑖 grows essentially according to (19).
The only difference is that �̇�𝑖 is linear not in 𝑃𝑖 but in 𝑃𝑖 ⋅ 𝐴𝑖/max𝑖({𝐴𝑖}), but by invari-
ance the numerator and the denominator grow at the same rate over the long run. The
aggregate result, fixing the research share 𝑠, is a deterministic process familiar from (20):

�̇�𝑡 ∝ 𝑌𝑡/𝑁𝑡 ∝ 𝐴𝑡𝑁
𝜎−1
𝑡 𝐿

1−𝜎
𝑡 .

Because 𝜎 < 1, Result 2 follows immediately.

16For consistency with the other sections, our 𝜎 is Howitt’s 1 − 𝛼. Also, Howitt defines 𝐴𝑖 so that 𝑌𝑖 is
linear in 𝐴𝑖 but 𝑌 is nonlinear in average process efficiency; we use a change of variables to do the reverse.

17Asymptotically or, if the initial distribution is the asymptotic distribution, precisely.
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Aghion and Howitt (1998, ch. 12.2) and Howitt (2000) — Output equals18

𝑌𝑡 = 𝑁
𝛼−1
𝑡 (∫

𝑁𝑡

0

𝑌
𝛼
𝑖𝑡 𝑑𝑖)

𝐿
1−𝛼
𝑡 ⋅

(

𝑁𝑡

𝐿𝑡
)

𝜎

, 𝛼 ∈ (0, 1), 𝜎 ∈ [0, 1); (21)

𝑌𝑖𝑡 = 𝐴
1/𝛼

𝑖𝑡 𝐾𝑖𝑡 ,

where the capital stock 𝐾 = ∫
𝑁

0
𝐾𝑖𝑑𝑖 grows with saved output in the usual way, but this

will not be relevant for our purposes.
As in Howitt (1999), process innovations arrive stochastically, but in a way that main-

tains an invariant distribution of {𝐴𝑖} and, in the efficient capital allocation,

∫

𝑁

0

𝑌
𝛼
𝑖 𝑑𝑖 ∝ 𝑁 ⋅

(
𝐴

1/𝛼
𝐾/𝑁

)

𝛼

= 𝑁
1−𝛼
𝐴𝐾

𝛼

⟹ 𝑌𝑡 ∝ 𝐴𝑡𝐾
𝛼
𝑡 𝐿

1−𝛼
𝑡 ⋅ (𝑁𝑡/𝐿𝑡)

𝜎
,

where 𝐴 as usual may be an average or weighted average of the {𝐴𝑖}.
Remarkably, in the model studied throughout the body of the textbook chapter and

the entirety of Howitt (2000), the (𝑁/𝐿)𝜎 term at the right of (21) is absent; 𝜎 equals zero.
The 𝑁 𝛼−1

𝑡 term at the left precisely nullifies the benefits of variety that the Dixit-Stiglitz-
style aggregate is usually designed to capture, and inventing new goods effectively just
fragments “𝐴” into smaller pieces. In footnote 6 of the chapter, the authors acknowledge
that “[l]iterally, the model implies that the optimal number of different products is van-
ishingly small”, but say that this “counterintuitive welfare result” can be eliminated with
the tweak above.19

In the case of Howitt (2000), this is always false. Given a constant research share 𝑠 and
an equal allocation of process efficiency investment across goods, 𝐴 evolves according to

�̇�𝑡 ∝ 𝑌𝑡/𝑁𝑡

for the usual reasons. By assumption 𝜎 < 1, so Result 2 follows at once.20
In the chapter itself, 𝐴 evolves according to

�̇�𝑡 ∝ 𝐴𝑡𝑅(

𝑝𝑌𝑡

𝐴𝑡𝑁𝑡
)

with 𝑅(0) = 0, 𝑅
′
> 0, 𝑅

′′
< 0

= 𝐴𝑡𝑅(𝑝𝐾
𝛼
𝑡 𝐿

1−𝛼−𝜎
𝑡 𝑁

𝜎−1
𝑡 ). (22)

18For consistency with the other sections, we have used 𝜎 for the authors’ 𝛽 and let 𝑌𝑖 stand for the
authors’ 𝐴1/𝛼

𝑖 𝑥𝑖. We have then redefined 𝐴𝑖 for the reasons in footnote 16 above.
19They argue that placing an 𝐿 in the denominator, so that doubling population and variety has no

impact on output per person, “might be justified by the fact that the variety of different tastes... expands
as people become more numerous” or by “thin-market costs”. Removing this penalty to population (or
making it weaker than 𝜎) would affect the equilibrium, but it has no bearing on the inefficiency results.

20In fact, the paper assumes for simplicity that utility is linear in consumption, so even a cut to the
product range big enough to raise the growth rate above the discount rate generates infinite utility.
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From the discussion of Peretto (2018) proper, we know that if 𝑅′ diminishes no more
steeply than a power function, Result 2 still follows. As in the continuous-time analog
to Young (1998), Result 1 holds—more precisely, double-exponential growth is feasible—
unless 𝑅(⋅) is sublogarithmic.21

Aghion et al. (2025) — Output equals (16)–(18), as in Peretto (2018). Process efficiency for
good 𝑖 grows according to22

�̇�𝑖𝑡 ∝ 𝐴𝑖𝑡(
𝑃𝑖𝑡𝐴

1−𝜎
𝜎

𝑡 𝐴
− 1
𝜎

𝑖𝑡 𝐿
−𝜎
𝑡 )

𝜆

, 𝜆 > 0, (23)

where 𝐴 is a CRS, CES aggregate of {𝐴𝑖} with elasticity of substitution greater than 1.23
As usual, assume symmetry, replace 𝐴𝑖 with 𝐴, and, fixing 𝑝, substitute 𝑌 /𝑁 for 𝑃𝑖 to get

�̇�𝑡 ∝ 𝐴𝑡(𝐿𝑡/𝑁𝑡)
𝜆(1−𝜎)

.

Just as in Peretto (2018) [with 𝜁 = 0], Result 2 holds iff the exponent on 𝑁 is negative,
which it is iff 𝜎 < 1 (𝜀 > 2).

Recall that in Peretto (2018) with 𝜎 > 1 (𝜀 ∈ (1, 2)), the rate of vertical innovation
increases in both population and in variety, since a growing number of varieties grows
output so quickly that even output per variety increases. An expanding range of varieties
thus fails to defuse the double-exponential growth that obtains when variety is fixed, and
this motivates a restriction to the 𝜎 < 1 case. Here, by contrast, if 𝜎 > 1, the exponent on
(𝐿/𝑁 ) is negative. As a result, the 𝜎 > 1 case does not exhibit extreme inefficiency (even
though themodel uses log utility): double-exponential growthwould require exponential
growth in 𝑁/𝐿, rather than 𝐿/𝑁 , and the costs of developing new goods (which appear
in the paper as roughly equivalent to labor costs) render the former infeasible. In short,
when𝜎 > 1, Aghion et al. overturn the relationship fromgrowing populations to growing
growth rates by positing outright that, in this case, the maximum feasible rate of vertical
innovation decreases in population per product.24

21Though capital accumulation now contributes to output and, indirectly, to technological develop-
ment, this does not change the qualitative result. To see this, observe that with 𝑌 growing double-
exponentially, 𝐾 grows less than double-exponentially, so by (22) with 𝑅(𝑥) = ln(𝑥) and 𝑁𝑡 ∝ 𝑒−𝑒

𝑛𝑡 ,
𝑔𝐴 still grows exponentially. The rest of the proof sketch in Section 2.2 follows.

22This follows from rearranging the authors’ equation 6, using 𝜀 for their 𝜃 (so our 𝜎 equals their
1/(𝜃 − 1)) and 𝜆 for their 1/(1 + 𝜁 ). They focus only on the 𝜆 < 1 (𝜁 > 0) case.

23As with Dinopoulos and Thompson (1998), we posit that 𝑁 may shrink, so that if research and pro-
duction are restricted to goods up to 𝑁𝑡 , 𝐴𝑡 equals {𝐴𝑖𝑡} (𝑖 < 𝑁𝑡 ). Here, however, the paper is explicit that
exit is possible and that discontinued goods are removed from the technology aggregate.

24Another distinctive feature of the paper is that it posits that a stream of investment is needed to keep
a given range of goods “alive”, somewhat analogous to the fixed costs of Peretto and Connolly (2007) or
Young (1998). This is the motivation for the paper: the fixed costs are interpreted as the costs of developing
new goods once we run out of further process efficiencies for the old goods. These costs do not change the
conditions under which Result 2 obtains, but because a smaller good range requires smaller fixed costs,
they only strengthen the result.
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This illustrates that extreme inefficiency is avoided (under some parameter values) if
we go beyond sharply decreasing returns to vertical innovation, and assume negative re-
turns (under said parameter values). More precisely, the assumption is that the existence
of human beings generates a direct negative contribution to vertical innovation, which
can be relieved only by creating variety. This direct cost is present in the model for all
parameters, and is stipulated to have elasticity 𝜎, as can be seen from (23). If 𝜎 > 1, this
negative contribution grows more quickly in 𝐿/𝑁 than the indirect benefit: namely that
a larger population creates, with elasticity 1, more output to devote to research. The au-
thors justify this modeling choice that places “𝐿−𝜎” in (23) as “captur[ing] the effect that
a larger market leads to faster economic growth”, but it is unclear how it could capture
this effect, since it is in fact a stipulation that larger markets make growth more costly.
It is also unclear why we should expect the elasticity of this cost to be precisely 𝜎, so
that population growth puts a net drag on technological development precisely when it
would otherwise suffice to render growth double-exponential.

In any event, when calibrating the model, the authors use a conventional estimate of
𝜀 = 4, or 𝜎 = 1/3 (see Table 1).

4 Discussion
We have seen that the SWE approach to growth theory implies either (i) that vertical
innovation faces severely diminishing returns or (ii) that explosive growth is feasible
but goes unrealized due to a colossal market and/or policy failure. This “dilemma” has
implications for the plausibility of the SWE approach. If we accept that the approach is
broadly accurate nonetheless, the dilemma in turn has significant implications for the
growth impacts of automation.

4.1 Implications for second-wave endogenous growth theory
Plausibility of severely diminishing returns — The SWE literature since Young (1998) has
entirely abandoned the assumption of sublogarithmic returns to investments in process
efficiency.25 Indeed, even Young does not frame his research function as sublogarithmic
explicitly. Themost common assumption is that the returns are linear. This is presumably
because such steeply diminishing returns are considered intuitively implausible and be-
cause firm-level studies of the elasticity of productivity increases to research investment
do not typically find them.26

That said, it does not seem unreasonable to suppose that the elasticity quickly ap-
proaches zero outside the observed range. Perhaps no research team, however large,

25With the partial exception of Aghion and Howitt (1998, ch. 12.2), as noted.
26See e.g. Hall and Mairesse (1995), Lanjouw and Schankerman (2004), Klette and Kortum (2004), and

Akcigit and Kerr (2018). To be sure, this may be largely because it is standard practice not to look for them,
and only to estimate a local elasticity.
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could double the process efficiency of a typical assembly line in five minutes.

Plausibility of extreme inefficiency — The alternative possibility is that explosive growth
is and has long been technologically feasible. This possibility may be highly counterintu-
itive, but if it is true it is among the most important facts of all time. It is worth evaluating
seriously.27 Market and policy failures can destroy markets even in the developed world,
and have kept growth rates low in some developing countries for decades even after
many examples of rapid catch-up growth have offered case studies for others to follow.
Ultimately, however, this possibility appears untenable for at least three reasons.

First, if explosive growth is feasible, the size and speed of its benefits drastically ex-
ceed those of resolving any other case of stagnation or market failure. A country may
stagnate if a small increase to its growth ratewould require investments or policy changes
with large up-front costs, especially if the costs accrue to its current elite (see e.g. Ace-
moglu and Robinson (2012)), but any such costs will pay for themselves if the growth
impact is sufficiently large and rapid. Moreover, the history of Mao’s China demonstrates
that it is feasible for a modern state to enforce severe “negative horizontal innovation”,
restricting output to a narrow range of goods. History also of course offers many exam-
ples of large, successful, publicly sponsored research projects in narrow domains, such
as the Manhattan Project, the Apollo Program, or the Human Genome Project. It is hard
to see why no state would be able to afford whatever costs are associated with sustaining
negative horizontal innovation and a large research program at the same time.

Second, the logic of an SWE model implies (absent sublogarithmic returns to invest-
ments in process efficiency) that, even if a single firm or community refused to trade
with the rest of the world, it would be able to generate explosive growth on its own.
This putatively does not happen only because the members of any such group would
face a constant temptation to depart and establish monopoly over a new product, whose
rents would be astronomical due to its complementarity to the few but plentiful products
produced by the rest. The solutions to this kind of coordination problem are straightfor-
ward: e.g. a consortium agreement ensuring that, if any party withdraws, the project is
canceled. It is hard to imagine that no group in the world, over generations, could have
implemented one.

Third, many people already choose careers in part on the basis of their social impact.
Many more would accept below-market pay to join a team—indeed, surely many would
pay to join a team—that could open the gates of heaven.

Alternative preferences — If we reject both the possibilities above, we reject the SWE lit-
erature, at least in its current form. The most common alternative, as noted in the intro-
duction, is semi-endogenous growth theory. Semi-endogenous growth models maintain

27Indeed, one of the primary motivations for the SWE approach to growth theory is that it is said to
match the evidence on how policy can affect the growth rate: see the introduction of Aghion et al. (2025)
for an up-to-date statement of the case. If this is true, its implication that a new policy paradigm could
send growth to infinity is worth taking especially seriously.
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the Dixit-Stiglitz preference specification, but propose an alternative research function
which implies that economic growth can be sustained only by population growth.

Another possibility is that the SWE-style research function (on both dimensions) is
roughly accurate, but that theDixit-Stiglitz aggregator leads us badly astray. In particular,
if marginal utility diminishes rapidly enough in the consumption of each good, consum-
ing a wider range of goods is sometimes preferable even to arbitrarily large quantities of
a narrower range of goods. Then even if explosive growth in a vanishing range of goods
is feasible, as in Result 2, it may be preferable to widen the range of goods instead.28 In
combination with fixed labor costs to maintaining a given product line, it may be optimal
to keep variety proportional to population, such that stagnant populations in the long
run engage only in vertical innovation.29

Because the required preferences are highly nonhomothetic, however, they do not
admit a consumption aggregate at all. There is then no straightforward sense in which
economic growth has historically been exponential, the central stylized fact which SWE
and semi-endogenous models both seek to explain. Though an alternative preference
specification may salvage parts of the SWE approach, therefore, it should arguably mo-
tivate a reexamination of growth theory more fully.

4.2 Implications for growth after automation
Severely diminishing returns — In a semi-endogenous model, economic growth proceeds
at roughly its maximum possible rate. Growth is, in a technological sense, more difficult
than in an SWE model: it is constrained not by equilibrium decisions to expand variety
but simply by a lack of people. Precisely for this reason, however, a semi-endogenous
model predicts that in the event of full automation—where output can be turned into
robots capable of performing every task in research and production—growthwill acceler-
ate dramatically. In fact, even sufficient partial automation renders growth hyperbolic.30

Now consider a simple SWE-style model, under full automation, in which vertical
innovation faces severely diminishing returns. Consumption good 𝑖 is produced by the
“bots” 𝐵𝑖 allocated to producing it, which they do with efficiency 𝐴𝑖:

𝑐𝑖𝑡 = 𝐴𝑖𝑡𝐵𝑖𝑡 ,

so that under symmetry the Dixit-Stiglitz aggregator equals

𝑐𝑡 = 𝐴𝑡𝑁
𝜎
𝑡 𝐵𝑡 ,

28Work in progress with Chad Jones explores this and related points. For a very early draft containing
some of the intuition, see Trammell (2024).

29I thank Pete Klenow for this point.
30See Aghion et al. (2019), Section 4.1, example 3. For a corrected proof see Trammell and Korinek

(2023), Section 6.
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where ∫ 𝑁

0
𝐵𝑖𝑑𝑖 = 𝐵 and as usual {𝐴𝑖} = 𝐴. Fixing the share of robots engaged in vertical

innovation, process efficiency for good 𝑖 grows according to31

�̇�𝑖𝑡 = 𝐴𝑖𝑡𝑅(𝐵𝑡/𝑁𝑡) with 𝑅
′
> 0, lim

𝑥→∞
𝑅(𝑥) = �̄� .

Like consumption goods, bots are themselves a produced good. Fixing the shares of
bots engaged in bot production and bot vertical innovation, the bot population grows
according to

�̇�𝑡 ∝ 𝐴BOT,𝑡𝐵𝑡 ,

�̇�BOT,𝑡 = 𝐴BOT,𝑡𝑅(𝐵𝑡).

We ignore depreciation because, with 𝐵 growing superexponentially, the exponential de-
preciation process is irrelevant in the limit. We stipulate that production and research
are done by robots rather than by undifferentiated output to distinguish increases in con-
sumption due merely to a taste for variety, i.e. those induced by raising𝑁 , from increases
in productive capacity that allow robots themselves to accumulate more quickly.

In the limit, 𝐴 grows at a rate no greater than �̄� and 𝐵 grows double-exponentially at
a rate proportional to 𝑒�̄�𝑡 . The final source of consumption growth is then 𝑔𝑁 .

Fix the share of bots engaged in developing new goods. Suppose that new goods
inherit average process efficiency, as roughly in the existing SWE literature (so that the
technology aggregate 𝐴 grows like 𝐴𝑖 for each 𝑖 in production, as stipulated). If, by
analogy to one strand of the literature,

�̇�𝑡 ∝ 𝐵𝑡 ,

then 𝑁 grows like an exponential integral—slower than double-exponentially. The as-
sumption that “new goods per bot” is constant might be justified on the grounds that
developing a new good 𝑗 and a process for it that is as efficient as the existing 𝐴 grows
more difficult as 𝐴 rises, in a way that just offsets whatever positive spillovers come from
the technology associated with high process efficiency in existing goods. Alternatively,
following another strand, we might simply specify

𝑁𝑡 ∝ 𝐵𝑡 .

Then 𝑁 grows double-exponentially with 𝐵. In either case, 𝑐 grows at most double-
exponentially like 𝑒𝑒�̄�𝑡 .

In this framework, we know that �̄� exceeds the current rate of process efficiency
growth (say 1% per year, if the economic growth rate is roughly split between vertical and
horizontal innovations). We also know that 𝑅′(𝑥) begins to diminish rapidly for 𝑥 not too

31Positing that 𝑅(⋅) is upper-bounded simplifies the analysis. Unbounded but sufficiently concave re-
search functions can likewise yield the conclusion below that, on an efficient path, output grows double-
exponentially instead of exhibiting a vertical asymptote.
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far above 𝑅−1(1%), or else a result qualitatively similar to Result 2 would obtain; the burst
of growth achievable by shrinking variety would be finite but dramatic. It is difficult to
say much more. In any case, double-exponential growth is eventually arbitrarily rapid—
we are imposing no limits on the rate at which robots will ultimately be able to self-
replicate or build the things we value—but there is a big difference between a vertical
asymptote and a growth rate that itself grows at, say, 10% per year.

Note how the central mechanism behind the result, an extremely concave research
function, would be incompatible with the semi-endogenous framework (without further
modifications). For exponentially growing research labor to drive exponential growth in
�̇�, 𝑅(⋅) can be at worst power-functional.

Extreme inefficiency — Briefly, suppose we accept the SWE framework but reject the con-
clusion that vertical innovation faces severely diminishing returns, maintaining instead
that growth has historically been extremely inefficient because of the coordination fail-
ures discussed in the previous subsection. Then automating process efficiency research,
even for a narrow band of goods, yields Result 2 as long as the automated researchers
can be instructed to coordinate.

Unlike in a semi-endogenous framework, hyperbolic growth does not require the
automation of any part of production. The “bots” do not have to be numerous, self-
replicating, or able to produce any of the final goods we value.
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