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Abstract

I study a static production economy in which consumers have not only
preferences over their own consumption but also preferences—e.g. ethical
preferences—over the aggregate supply of each good. Though existing work
on the implications of such preferences assumes that consumers act as price-
takers, I show that consumers with such preferences generically choose not
to act even approximately as price-takers, when permitted to act strategi-
cally. I therefore introduce a near-Nash equilibrium concept that generalizes
the near-Nash equilibria found in literature on strategic foundations of gen-
eral equilibrium to the case of where consumers care about both consumption
and supply. I also find [currently narrow] sufficient criteria under which such
equilibria exist, and closed-form characterizations of consumer behavior in all
such equilibria.

1 Introduction

1.1 Motivation

A consumer’s purchasing behavior affects not only the quantities of goods she herself
consumes, but also the quantities others consume and the total quantities of each
good supplied. She may have preferences over all these quantities, and she may, as
a result, optimize her purchasing behavior accordingly. This paper explores a model
of general equilibrium in which consumers do so.

Consider, for example, a consumer with concern for animal welfare. The con-
sumer’s utility is increasing in his own meat consumption, holding supply fixed, but
decreasing in total meat supply: in the supply of pigs and chickens in particular.
The latter effect may, and often does, motivate consumers to purchase less meat
than they would otherwise (or none at all).
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It bears emphasizing that, despite the well-known result (Roberts and Postle-
waite, 1976) that a consumer’s ability to impact equilibrium prices generically van-
ishes as the economy grows large, her ability to impact equilibrium supply does not.
This is because, as the economy grows large and the price-impacts of an individual
consumer’s demand behavior shrink to zero, any such price-impact influences the
purchases of a number of other consumers that rises to infinity.

Consider a consumer’s decision to buy one more unit of some good at any given
price. Compare (a) the impact of this decision on that good’s equilibrium prices and
supply levels in a given economy with (b) the impact of the decision on equilibrium
prices and supply levels in a “doubled” economy with twice as many agents but
an identical distribution of endowments, preferences, profit shares, and production
technologies. In the doubled economy, quantities supplied and demanded at any
given price will double:

In the doubled economy, the units on the vertical axis do not change, but the
units on the horizontal axis are doubled, as the rightward movement of the demand
curve on the page resulting from a one-unit decrease in demand is halved. Thus,
if buying one unit of some good causes its production to increase by 0.5 in an
economy with, say, one billion participants, it also causes its production to increase
by approximately 0.5 in the economy with two billion participants. The size of an
“ethical externality” in this sense does not in general fall to zero as price impacts
fall to zero and an economy approaches perfect competition.

In light of these ethical externalities, how should an animal-welfare-conscious con-
sumer should adjust his demands, relative to what they would be if he had no concern
for animal welfare? If he believes that the production of a dollar’s worth of chicken
creates more misery than the production of a dollar’s worth of pork, he may naively
be inclined to prioritize reducing his purchases of chicken over reducing his purchases
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of pork. If the supply of pork is more price-elastic and demand for pork less price-
elastic than that of chicken, however, this inclination may be misguided. Buying less
chicken in this case simply causes the price to fall and the quantity demanded by
other consumers to rise, with little net impact on the quantity of chicken consumed.
Buying less pork, by contrast, generates a substantial decrease to the quantity of
pork consumed. Cutting back on pork may thus be the higher priority.

Complicating matters further, our consumer must consider the impact of his
purchases of a good not only on the quantity of that good, but on the quantities
of all the goods he cares about. If buying less chicken causes other consumers to
substitute to chicken from other meat products, whereas buying less pork causes
other consumers to substitute to pork from vegetables, then cutting back on chicken
may be the best policy after all.

Though this paper is intended primarily as a model of ethical consumerism, and
the precise modeling assumptions made will be tailored to the ethical consumerist
context, it is worth noting that other agents with preferences over total supply levels
also face the motivations and challenges described above. Suppose, for instance, that
some goods impose more conventional (i.e. not “ethical”) externalities on a consumer,
and that these externalities depend on the goods’ absolute supply levels rather than
on supply per person. Then the utility-impacts of the consumer’s contributions to
supply are not close to zero even when her proportional contributions are small.
When she decides what to buy, she too must consider the impacts of her purchases
on the equilibrium supply levels of all the goods that impose externalities on her.

This paper aims to characterize, in light of these complications, equilibrium mar-
ket behavior by “ethical consumers”—and other consumers with preferences over own
good-consumption levels, others’ good-consumption levels, and total supply levels—
in a competitive production economy. That is, we will study strategic consumer
behavior in general equilibrium with externalities.

1.2 Related literature

Though this appears to be the first model to incorporate all three features (strategic
behavior, general equilibrium, and externalities), there exist literatures exploring all
three pairs of these features in isolation.

First, there is an extensive literature exploring strategic behavior in general equilib-
rium without externalities. A central concern of this literature is to put the standard
Walrasian model—in which agents are forbidden from strategic behavior and must
act like perfect price-takers—on a strategic footing. This is done by constructing a
game in which firms and/or individuals can choose their supply or demand corre-
spondences, respectively, and equilibrium prices set the excess demands implied by
these chosen correspondences equal to zero. Consider a sequence of such games set
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in ever larger “replicated economies”, with each agent becoming an ever smaller part
of the whole, and consider the sequence of Nash equilibria of these games. We can
then ask under what circumstances, and in what sense, these Nash equilibria—these
profiles of chosen supply and demand correspondences—can or must converge to the
“Walrasian” profile in which agents all choose their price-taking supply or demand
correspondences.

Roberts and Postlewaite (1976) show that, in an exchange economy, the demand
correspondences chosen in a sequence of Nash equilibria do not generally converge,
even pointwise, to the Walrasian demand correspondences. They do find, however,
that a consumer’s impacts on equilibrium prices, equilibrium allocations, and her
own utility by choosing her Walrasian demand correspondence fall to zero as the
economy is replicated. It follows that if a consumer faces arbitrarily small costs—
e.g. computational costs—to deviating from price-taking behavior, she will choose
to act as a price-taker in a sufficiently large economy.

Otani and Sicilian (1990), studying a restriction to the same game, demonstrate
that if consumers can only choose differentiable demand functions, there are se-
quences of Nash equilibria that, again, converge to Walrasian equilibria. Jackson
and Manelli (1997) find that uncertainty about others’ chosen strategies can also
motivate consumers to adopt behavior that converges to fully price-taking behavior.

Though these papers all discuss exchange economies, they are perhaps the papers
on strategic foundations for general equilibrium most relevant to this one, which
will feature a production economy but strategic behavior only by consumers. Never-
theless, the literature contains numerous other convergence results, including results
set in production economies featuring strategic behavior by producers. The message
generally taken from this literature appears to be that Walrasian equilibrium reason-
ably approximates what one should expect to obtain in an economy in which prices
result from the strategic behavior of consumers and/or firms. As we will see, and as
suggested by the informal discussion of §1.1, the presence of consumers with ethi-
cal preferences, or supply externalities more generally, allows no such approximation.

A second literature explores general equilibrium with externalities in settings in
which individuals are not permitted to act strategically.

Dufwenberg et al. (2011), for instance, present a model intended to capture
equilibrium purchasing behavior in a production economy in which individuals may
have “other-regarding preferences”: preferences defined not only over their own con-
sumption baskets but also over the consumption baskets, utility levels, or budget
sets achieved by other consumers. If Dufwenberg et al. had allowed consumers to
choose their demand functions strategically, their project would have encompassed
the project of the present paper, since concern for the total production of various
goods is a special case of concern for others’ consumption baskets. Instead, however,
Dufwenberg et al. maintain the classical assumption that each individual is fully
price-taking, in the sense that she acts as if her own purchases have no impact on
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prices and thus no impact on aggregate production. They thus conclude that an
individual’s other-regarding preferences have no impact on her purchasing behavior
unless they are not separable from her self-regarding preferences: for example, if she
prefers brown bread to white bread if and only if her neighbor has two cars.

A similar “fully price-taking” approach to other-regarding preferences, or pref-
erences over total production levels, is taken by Kreps (1990) (p. 203), Ellickson
(1994) (§7.3), Sobel (2009), and others.

The approach taken in this literature may be motivated by the observation
from the literature on strategic foundations for general equilibrium that, in large
economies and in the absence of externalities, relatively mild assumptions can
guarantee that strategic behavior differs little (or produces outcomes that differ
little) from price-taking behavior. In contrast, the present paper is centered on the
insight that, as noted above, externalities such as ethical preferences will typically
motivate strategic consumer behavior that differs substantially from price-taking
behavior, however large the economy relative to each consumer.

Finally, at least two strands of literature explore the implications of strategic demand
behavior by individuals with preferences over supply levels, but do so in a partial
equilibrium setting.

The first is the general literature on the private provision of public goods.
Bergstrom et al. (1986) study equilibrium spending behavior by public good providers
in light of crowd-out issues like those discussed above. The model we will consider is
thus conceptually related to the model introduced by Bergstrom et al. and developed
throughout the subsequent literature on the private provision of public goods and
bads.

Our model, however, will vary from the models typically explored by that litera-
ture in three interrelated ways. First, whereas models of public good provision games
typically treat prices as exogenous, we will allow goods’ prices to be determined en-
dogenously by the starting endowments, production technologies, and quantities of
other goods purchased. Second, we will allow some individuals to have preferences
that depend only on their own consumption baskets and not at all on total supply
levels. (Without the first variation—i.e. the introduction of endogenous prices—fully
“selfish” individuals have no impact on the game played among those who do care
about total supply levels. Selfish individuals can therefore safely be excluded from
the model.) Third, we will assume that all agents are small, in the sense that they
can act as price-takers for some purposes.

The second is the literature, apparently confined so far entirely to agricultural eco-
nomics, on “equilibrium displacement models”, or EDMs. (See Wohlgenant (2011)
for a review.) EDMs generate predictions about the impact that purchases of a
particular good have on that good’s equilibrium supply level. Norwood and Lusk
(2011), for instance, estimate the price elasticities of supply and demand for various
animal products and, from these estimations, calculate the extent to which marginal

5



purchases of a given animal product change the equilibrium quantity supplied of that
product. Wilkinson (2022) uses a similar EDM analysis in arguing that consumers
are morally obligated to account for the market externalities of their purchases: i.e.
the impacts that their purchases have on prices, and the impacts of these price-shifts
on others’ purchases and ultimately others’ welfare.

The two pieces cited above—along with most of the EDM literature—only con-
sider the impact of purchasing a certain good on the equilibrium supply of that
good. In effect, they consider only the equilibrium supply shift presented graphically
in §1.1. For our purposes, such an analysis is relevant only in the event that cross-
price elasticities of demand and supply are zero across goods over whose supply a
consumer has ethical preferences. Goods about which one has ethical preferences,
however, are often highly substitutable (for consumers and other producers) with
goods about which one has similar ethical preferences. Recall the example of §1.1: a
consumer who reduces her consumption of chicken on ethical grounds is likely to be
concerned with decreasing the production not only of chicken but also of other meat
products. Partial equilibrium analyses like the two cited above may thus be highly
misleading.

An obscure but especially relevant step toward generality, within the EDM liter-
ature, is developed by Gardner (1987). Gardner’s framework allows for an analysis
of multiple goods simultaneously, in which changes to an individual’s demand for
one good affect the equilibrium prices and supply levels of other goods under con-
sideration. His framework nonetheless falls short of a general equilibrium framework
in two ways. First, it can serve only as a partial guide to the individual ethical con-
sumer, as it breaks down when the consumer attempts to account for her impacts
on all markets at once. Second, it serves only as a guide to the individual ethical
consumer. It does not address the complexities in defining and finding the equilibria
that arise when multiple (let alone all) consumers choose demands in light of their
ethical preferences. It is thus in no way continuous with the literature on public
good games, referenced above.

The general equilibrium analysis presented here fills this gap.

2 Model

2.1 Overview

There are L ≥ 2 goods.
The production technology allows a production vector y ∈ RL if F (y) ≤ 0, where

F (·) : RL → R is a strictly increasing, strictly convex, C1 function with F (0L) = 0.
There are I individuals, with starting endowments ωi ≥ 0 (or ωiℓ ≥ 0 of good

ℓ) and utility functions ui for i = 1, ..., I. The vector of total initial endowments
is ω, and the total initial endowment of good ℓ is ωℓ. Likewise, the vector of net
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production quantities is y, and the net production of good ℓ is yℓ.
Supply is denoted s ≜ ω + y. Supply cannot be negative. It follows from our

assumptions on F (·) that the production possibility set

Y ≜ {y : F (y) ≤ 0, yℓ ≥ −ωℓ ∀ℓ} (1)

is compact. (See Mas-Colell et al. (1995), Proposition 16.AA.1.)
Given any prices p≫ 0, production y is chosen to maximize p · y:

y(p) ≜ argmax
y∈Y

p · y. (2)

It follows from our assumptions that y(p) is single-valued.1 Of course, since the
value that maximizes a function also maximizes any monotonic transformation of
it, y(p) and s(p)(≜ ω + y(p)) are homogeneous of degree zero.

Given y : F (y) = 0, the marginal rates of transformation between goods are given
by the ratios of entries in ∇F (y) (≫ 0). Observe that

Ȳ ≜ {y ∈ Y : F (y) = 0} (3)

is compact: it is bounded because it is a subset of Y , which is bounded, and it is
closed because it is the preimage of the continuous function F (·) on the closed set
{0}. It then follows from the continuous differentiability of F (·) that

P ≜ {∇F (y)/(∇F (y))L}y∈Ȳ (4)

is compact. Intuitively, P is the set of price vectors for which y(p) is not constrained
by the endowment.

Let

P̃ ≜ {p : s(p) ≫ 0, pL = 1}. (5)

P̃ ⊂ P . By contradiction, consider a p ∈ P̃ . If p ̸∈ P , there exist ℓ, k such that
p̄ℓ/p̄k > (∇F (y(p̄)))ℓ/(∇F (y(p̄)))k. Small ∆y with ∆yℓ > 0, ∆yk < 0,

−∆yk
∆yℓ

∈
( (∇F (y(p̄)))ℓ
(∇F (y(p̄)))k

,
p̄ℓ
p̄k

)
, (6)

and ∆ym = 0 (m ̸= ℓ, k) are thus feasible, by s(p̄) ≫ 0, and strictly profit-increasing.
We will assume that F (·) is such that

ȳ(p) ≜ argmax
y :F (y)≤0

p · y (7)

1Because Y is compact, a maximum exists. Because F (·) is strictly convex, the maximum
is unique: a convex combination of two maxima would earn equal profits, and allow for further
profit-increasing production.
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is C1 on P , and therefore that y(p) is C1 throughout P̃ (with Jy(p) = Jȳ(p) for p ∈ P̃ ).

Aggregate profits are denoted π.2 Profits are divided among consumers according to
shares θi ≥ 0. Consumer i’s budget thus equals p · ωi + θiπ.

Individual i’s demand function is denoted xi(·), and a vector of purchases by i is
denoted xi. The aggregate demand function, or sum of individual demand functions,
is denoted x(·), and the vector of total purchases of each good is denoted x.

Individual i has a utility function ui(·) representing her all-things-considered
preferences over (xi, s) ∈ R2L

≥0. We will assume that her preferences are additively
separable across xi and s, with her utility function taking the form

ui(xi, s) = vi(xi) + wi(s). (8)

Her consumption utility function vi(·) is strictly increasing and either (a) strictly
concave or (b) quasilinear in good L and strictly concave in goods ℓ < L. Her ex-
ternality function wi(·) is3 CRS and C1, noting in particular that ∇wi(s) is finite at
all s ≥ 0L.

We will assume that there is at least one individual whose preferences are defined
only over own consumption and who is endowed with positive endowments and a
positive profit share. We will denote some such individual I. More formally,

wI(s) = 0 ∀s, (9)

θI > 0, (10)

ωI ≫ 0. (11)

Prices, profits, and production levels are the outcome of a game that unfolds as
follows. First, each individual i chooses a demand function xi(p, π) that is feasible,
continuous, and homogeneous of degree zero, and that maintains p · xi(p, π) nonde-
creasing in π. Second, normalized prices p∗ and a profit rate π∗ are found that clear
all markets (as will be shown to exist). Third, production y is chosen to maximize
p∗ · y, and each consumer i receives his demanded basket xi(p∗, π∗).

We will assume for now that I sets xI(·) equal to his price- (and profit-)taking
demand function, noting that this function exists and is unique by the implied
strict quasiconcavity of vI(·). Propositions 4 and 5 will justify this assumption in

2If consumers exhaust their budgets, aggregate profits equal p · y(p). Though we will assume
that production is profit-maximizing, we will not in general assume that consumers exhaust their
budgets. Nevertheless, as shown below, the production vector y that maximizes p · y will also
maximize profits. Aggregate production is thus profit-maximizing. The definition of aggregate
profits more generally is given by (12) below.

3These terms are intended only as concise ways to distinguish vi(·), used to represent the pref-
erences i has over the quantities of goods she herself purchases, from wi(·), used to represent the
preferences i has over total supply levels. The latter will often consist primarily of concerns about
the externalities that supply imposes on others, but as noted in §1, it need not do so.
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equilibrium.

Given positive prices and an aggregate demand function, aggregate profits equal

π(p, x(·)) ≜ π such that p · x(p, π) = p · (ω + y(p)). (12)

Note that

p · x(p, p · y(p)) ≤ p · (ω + y(p)) (13)

by the feasibility of the chosen demand functions. Also, because the chosen demand
functions xi(·) are continuous and maintain p · xi(p, π) nondecreasing in π, we have
that p · x(p, π) is continuous and nondecreasing in π. Finally, by (9), (10), the
assumption that vI(·) is strictly increasing, and the assumption that I chooses his
price-taking demand function, p · x(p, π) is in fact strictly increasing in π, with

lim
π→∞

p · x(p, π) = ∞. (14)

Thus (12) is well-defined: there is always exactly one π such that p · x(p, π) =
p · (ω + y(p)). Furthermore, this π will be greater than or equal to p · y(p).

This definition of aggregate profits is a standard alternative to the more conven-
tional π(p, y) = p · y used in the event that individuals are not locally nonsatiated.4

Here, we do not assume local nonsatiation: we allow for the possibility that, in some
circumstances and for some preferences individuals might have about aggregate sup-
ply levels, an individual maximizes his utility by choosing a demand function in
which he does not always exhaust his budget. Defining profit to equal p · y would
imply that, even in equilibrium, more-than-satiated consumers would give rise to
p · x < p · s. Firms would in effect remain in possession of unsold goods of value of
p · (s− x), leaving them to rot on the shelves.

Definition (12), by contrast, amounts to the more natural and realistic assump-
tion that any such excess production would belong to the producer, and thus to
individuals according to shares θ. This implies that if p · x(p, π) < p · s(p), profits
π are incompatible with (p, x(·)). Given p, aggregate profits in fact exceed π by
p · (s− x). Likewise, if p · x(p, π) > p · s(p), profits π are incompatible with (p, x(·))
because they imply that consumers buy goods worth more than all the goods avail-
able to sell. In this case at least some of the dividends returned to consumers were
not true profits at all; firms would have had to withhold at least some of these profits
in order to fill the orders given by x(·).

Observe that when individuals do exhaust their budgets,

p · x(p, p · y) = p · ω + p · y = p · s. (15)

4Konovalov (2005) offers an review of the literature using this approach, at least as of 2005. The
resulting equilibria are called “dividend equilibria” or “Walrasian equilibria with slack”.

9



Profits then equal p · y, as usual. Also, even in the more general setting of
(12), because p · x(p, π) is increasing in π, assuming that production y(p) max-
imizes profits is equivalent to assuming that production maximizes p ·s and thus p ·y.

Let us make two clarifications.
First, it may seem as though individuals consider their impact on total production

only in their purchasing choices and not in their selling choices. That is, it may seem
as though individuals are assumed to maximize their income by selling the entirety of
their endowments, regardless of the extent to which their endowments are used in the
production of goods they consider to have negative externalities. In fact, however,
refusing to sell part of one’s endowment ωiℓ is here equivalent to increasing one’s
purchases of xℓ. If such purchases would produce a favorable marginal effect on s,
in equilibrium, then i will set xi(·) so as to motivate these purchases in equilibrium.

Second, note that instead of introducing a set of profit-maximizing firms, we
are simply positing that production maximizes aggregate profits subject to a single,
abstract production technology. If we modeled the firms explicitly, we would have
to model how their behavior responded to the diverse preferences of their owners,
not all of whom here care only about profit maximization. We would likewise have
to explore the possibility that some distributions of firm ownership are incompatible
with equilibrium. Individuals with preferences regarding the production levels of
some goods might, for instance, want to concentrate their capital holdings in a few
relevant firms so as to wield influence as “activist investors”. To restrict our focus to
the equilibrium consequences of market purchases, we will therefore simply assume
that production proceeds along profit-maximizing lines.

2.2 Formal summary

Definition 1. An economy E is a tuple of endowments {ωi}Ii=1, utility functions
{ui(·)}Ii=1, profit shares {θi}Ii=1, and a production function y(·) all compatible with
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the assumptions of the model introduced in §2.1: namely that

ωi ≥ 0 ∀i, ωI ≫ 0; (16)

ui(xi, s) = vi(xi) + wi(s), where both vi(·) and wi(·) are defined on RL≥0, (17)

vi(·) is strictly increasing and either (a) strictly concave or

(b) quasilinear in good L and strictly concave in goods ℓ < L,

and wi(·) is CRS and C1;

wI(·) = 0; (18)

θi ≥ 0 ∀i, θI > 0; (19)

and y(p), defined on RL>0, maximizes p · y given y ∈ Y , where (20)

Y ≜ {y : y ≥ −ω and F (y) ≤ 0} for some strictly increasing,

strictly convex, C1 function F (·) with F (0L) = 0 and

ȳ(p) ≜ max
y:F (y)=0

p · y defined and C1 for p ∈ {∇F (y)}y:F (y)=0.

Definition 2. A function xi(p, π) from RL>0 × R≥0 to RL≥0 is an admissible demand
function for i < I in economy E if xi(·) is (a) continuous, (b) h.o.d. 0, and (c)
feasible in the sense that

p · xi(p, π) ≤ p · ωi + θiπ ∀(p, π) ∈ RL>0 × R≥0, (21)

and (d) if p · xi(p, π) is nondecreasing in π.

An admissible demand function profile in E is a demand function profile

{xi(·)}Ii=1 for which xi(·) satisfies (a)–(d) above for all i < I and xI(·) is I’s price-
(and profit-)taking demand function.

An admissible aggregate demand function in E is the sum over i of the elements
{xi(·)} of an admissible demand function profile in E.

We will denote the set of admissible demand functions for i in E by Ai(E), the set
of admissible demand function profiles in E by {Ai(E)}, and the set of admissible
aggregate demand functions in E by A(E).

Definition 3. Given economy

E =
(
{ωi}Ii=1, {ui(xi, s)}Ii=1, {θi}Ii=1, y(p)

)
, (22)

the n-replicated economy equals

E (n) ≜
(
{ωi mod I}nIi=1, {ui mod I(xi, s)}nIi=1, {θi/n}nIi=1, ny(p)

)
. (23)
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n-replicated demand functions of various kinds equal

xi(n)(p, π) ≜ xi(p, π/n), (24)

x(n)(p, π) ≜ nx(p, π/n), (25)

x−i(n)(p, π) ≜ x(n)(p, π)− xi(n)(p, π), and (26)

{xi(p, π)}I (n)
i=1 ≜ {xi mod I(p, π/n)}nIi=1. (27)

n-replicated profits equal

π(n)(p, x(·)) ≜ π : p · x(p, π) = np · s(p) (28)

= n
(
π : p · x(p, π)/n = p · s(p)

)
= nπ(p, x(·)/n). (29)

Observe that individual and aggregate demand functions, and demand function
profiles, are admissible in E iff their n-replicated equivalents are admissible in E (n).

In this context, with individuals partially internalizing the impacts of their purchases
on total production levels, the relevant notion of market equilibrium is not Walrasian
equilibrium, nor even the “Walrasian equilibrium with slack” (WES) used to deal
with nonsatiation. The alternative equilibrium concept, however, will build closely
on WES. Let us now therefore define WES more precisely.

Definition 4. Given aggregate demand and supply functions x(p, π) and s(p),
implicit demand equals

χ(p) ≜ x(p, π(p, x(·))), (30)

and excess demand equals

z(p) ≜ χ(p)− s(p). (31)

Let

I ≜ [IL−1, 0L−1] : (32)

the (L− 1)×L matrix whose first L− 1 columns constitute the (L− 1)-dimensional
identity matrix and whose last column is the zero vector.

Definition 5. Given price vector p, the corresponding normalized price vector equals

p̂ ≜ Ip/pL. (33)

Given normalized price vector p̂,

˙̂p ≜ (p̂, 1)
(
= p/pL, if p is given

)
, (34)

and normalized excess demand equals

ẑ(p̂) ≜ Iz( ˙̂p). (35)
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Definition 6. Price vector p̄ is a Walrasian equilibrium with slack (WES) of econ-
omy E and aggregate demand function x(·) if z(p̄) = 0.
Normalized price vector ˆ̄p is a normalized WES of (E , x(·)) if ẑ(ˆ̄p) = 0.

Definition 7. A WES p̄ of economy E and aggregate demand function x(·) ∈ A(E)
is regular if the Jacobian of ẑ(·) exists and is nonsingular at ˆ̄p.

Given an economy E , an aggregate demand function x̄(·) ∈ A(E), and a WES p̄ of
(E , x̄(·)), let us also introduce the following shorthand:

π̄ ≜ π(p̄, x̄(·)). (36)

3 Equilibrium characterization

Proposition 1 (Existence of WES).
There exists a WES p̄≫ 0 of any economy E and aggregate demand function x(·) ∈
A(E). Furthermore, p̄ is a WES of (E , x(·)) iff p̄ is a WES of (E (n), x(n)(·)) ∀n ≥ 1,
and iff ˆ̄p is a normalized WES of (E , x(·)).

Proof. See Appendix A.1.

Given an economy

E =
(
({ωi}I−1

i=1 , ω̄
I), {ui(xi, s)}Ii=1, {θi}Ii=1, y(p)

)
, (37)

let

E(ωI) ≜
(
{ωi}Ii=1, {ui(xi, s)}Ii=1, {θi}Ii=1, y(p)

)
. (38)

Given xi(·) ∈ Ai(E), for some i < I, observe that xi(·) ∈ Ai(E(ωI)). Let
˜
xI(p, π, ωI)

denote the unique admissible demand function for I in E(ωI).

Proposition 2 (Almost always all interior WES are regular, given C1 demands).
Given economy E, consider {xi(·)} ∈ {Ai(E)} for which each xi(·) is C1. Then for
almost every ωI ≫ 0, every WES p̄ of (E(ωI), x−I(·) +

˜
xI(·, ωI)) for which s(p̄) ≫ 0

is regular. Furthermore, p̄ is a regular WES of (E , x(·)) iff p̄ is a regular WES of
(E (n), x(n)(·)) ∀n ≥ 1.

Proof. See Appendix A.2.

The assumption that xi(·) is C1 for i : wi(·) ̸= 0 can simply be imposed. The
assumption that xi(·) is C1 when wi(·) = 0 implies a restriction on ui(·), for such
i, beyond those we have made so far. See Kreps (2012, pp. 274–277) for (local)
conditions on ui(·) for which the price-/profit-taking xi(·) is (locally) C1.
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Proposition 3 (Local regular WES under demand perturbations).
Let p̄ be a regular WES of economy E and locally C1 demand function profile {x̄i(·)} ∈
{A(E)}. Then there exists an ϵ > 0 and an n ≥ 1 such that

• for any i and xi(·) ∈ Ai(E) that is C1 around (p̄, π̄), for n ≥ n there exists a
regular normalized WES p̂ of (E (n), x̄−i(n)(·)+xi(n)(·)) within the ϵ-neighborhood
of ˆ̄p; and

• within the ϵ-neighborhood of ˆ̄p, p̂ is the unique normalized WES.

Proof. See Appendix A.3.

Definition 8. An economy E is large with respect to {x̄i(·)} ∈ {Ai(E)} and WES p̄
of (E , x̄(·)) if Proposition 3 holds for (E , x̄(·), p̄) given n = 1.

Given economy E , demand functions {x̄i(·)} ∈ {Ai(E)}, and regular WES p̄
such that each x̄i(·) is locally C1, choose n such that E (n) is large with respect to
{x̄i(·)}(n), p̄. Denote the locally unique normalized WES of (E (n), x̄−i(n)(·)+xi(n)(·)),
for some locally C1 xi(·) ∈ Ai(E), by p̂(n)ˆ̄p

(xi(·)). Let

p
(n)
p̄ (xi(·)) ≜ p̄L(p̂

(n)
ˆ̄p
(xi(·)), 1). (39)

Given locally C1 demand function xi(·) ∈ Ai(E), denote the utility i achieves by
demand function xi(n) in the replicated economy by

u
i(n)
p̄

(
xi(·)

)
≜ ui

(
xi(n)

(
p
(n)
p̄

(
xi(·)

)
, π(n)

(
p
(n)
p̄

(
xi(·)

)
, x̄−i(n)(·) + xi(n)(·)

))
, ns
(
p
(n)
p̄

(
xi(·)

)))
. (40)

We can now define a competitive equilibrium concept suited to the case in which
consumers care about their impacts on supply.

Definition 9. Let p̄ be a regular WES of economy E and locally C1 demand function
profile {x̄i(·)} ∈ {A(E)}. Then (p̄, {x̄i(·)}) is a competitive equilibrium with supply
externalities (CESE) of E if, for all i and all locally C1 xi(·) ∈ Ai(E),

lim
n→∞

[
u
i(n)
p̄ (xi(·))− u

i(n)
p̄ (x̄i(·))

]
≤ 0. (41)

That is, (p̄, {x̄i(·)}) is a CESE if, in response to x̄−i(·), each i chooses an admissible
demand function xi(·) that would be optimal for i if the economy were “very large”
relative to i. In effect, xi(·) is the demand function i chooses when he acts as a price-
taker (because his impacts on prices are infinitesimal) but not as a quantity-taker
(because his impacts on prices affect the behavior of infinitely many other agents,
resulting in positive quantity effects even in the limit).

Let 0L denote the L-length vector of zeroes; let D(a), for an arbitrary vector a,
denote the diagonal Len(a) × Len(a) matrix M with Mℓℓ = aℓ for ℓ = 1, ...,Len(a);
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and let Jf (X) denote the Jacobian of function f at X. Then, given an economy E ,
define the following terms:

δ(p, x(·)) ≜ The gradient of the aggregate Engel curve at (p, π(p, x(·))), i.e.
∇πx(p, π(p, x(·)))

G(p, x(·)) ≜ The generalized inverse G of −Jz(p), where z(·) is implied (42)

by (E , x(·)), with Gδ(p, x(·)) = 0L and whose bottom row

equals 0TL
or

σ(p) ≜ The matrix of cross-price elasticities of supply at p

ε(p, x(·)) ≜ The matrix of cross-price elasticities of implicit demand at p

ϕ(p, x(·)) ≜ The generalized inverse ϕ of σ(p)− ε(p, x(·)) with
ϕD(s(p))−1δ(p, x(·)) = 0L and whose bottom row equals 0TL

ψi(p, x(·)) ≜
(
Js(p)G(p, x(·))

)T∇wi(s(p)) or, equivalently, (43)

=
(
σ(p)ϕ(p, x(·))

)T ∇wi(s(p))
ψ(p, x(·)) ≜ The L× I matrix with column i equal to ψi(p, x(·))

We can now characterize CESEs relatively simply.

Proposition 4 (Characterization of CESE).
Let p̄ be a regular WES of economy E and locally C1 demand function profile {x̄i(·)} ∈
{A(E)}. Then (p̄, {x̄i(·)}) is a CESE of E iff

x̄i(p̄, π̄) = argmax
xi

(
vi(xi) + ψi(p̄, x̄(·)) · xi

) ∣∣∣ p̄ · xi ≤ p̄ · ωi + θiπ̄ ∀i. (44)

Proof. See Appendix A.4.

An intuition for the result is as follows.
Starting from a WES p̄, suppose i adjusts his demand around p̄ by a just-feasible

∆xi: i.e., by a value ∆xi satisfying p · ∆xi = 0. The impact of this demand-
adjustment on prices will, when i is a negligible part of the economy, be linear in
∆xi, and can therefore be represented by ∆p = G∆xi for some matrix G. G must
satisfy

−JzG∆xi = ∆xi ∀∆xi : p ·∆xi = 0. (45)

That is, the equilibrium price impact of demand-shift ∆xi must motivate shifts in
supply (Js∆p) and in others’ demands (Jχ∆p) such that the gap between total supply
and others’ demands changes by precisely ∆xi. Note that −Jz = Js − Jχ.
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G must therefore be a generalized inverse of −Jz. Furthermore, the equilibrium
price impact of a demand-shift along the gradient of the aggregate Engel curve must
be zero: such a shift can be precisely accommodated by changing the aggregate profit
rate, and thus others’ demands, without affecting prices or supply. We thus have
Gδ = 0L. Finally, to restrict the space of prices under consideration to normalized
price vectors whose Lth entries equal 1 (or, more precisely, to restrict the space of
price-changes to those in which ∆pL = 0, so that pL remains fixed at any given
value), the bottom row of G must equal zero. There is a unique generalized inverse
of Js − Jx satisfying these two conditions. The conditions thus identify G.

Then, i’s marginal “ethical impact” of demand-shift ∆xi, starting from a given
WES, equals ψi ·∆xi, where

ψi T = ∇wi · JsG : (46)

G converts the demand-shift to a price-shift, Js converts the price-shift to a supply-
shift, and ∇wi converts the supply-shift to a marginal ethical impact from i’s per-
spective. Transposing (46) yields (43).

3.1 Example

To illustrate the equilibrium concept, consider the economy E (n), an arbitrary n-
replication of the following economy E with I = 2 individuals and L = 2 goods:

ωi = (3/2, 0) ∀i, (47)

v1(x1) = ln(x11) + x11/3 + x12, (48)

v2(x2) = ln(x21) + x22; (49)

w1(s) = s1 + 2s2, (50)

w2(s) = 0; (51)

θi = 1/2 ∀i (52)

and a production possibility frontier given by

y2 = 4− 4

1− y1
, y1 ≥ −3, y2 ≥ 0, (53)

so that profit-maximizing production equals

y(p) =

(
1− 2

√
p2
p1
, 4− 2

√
p1
p2

)
(54)

as long as p1/p2 ∈ [1/4, 4] to ensure an interior solution. (Recall from the discussion
following (15) that profit-maximizing production maximizes p · y, even when profits
do not equal p · y.)
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By definition, supply is therefore

s(p) =

(
4− 2

√
p2
p1
, 4− 2

√
p1
p2

)
, (55)

as long as p1/p2 ∈ [1/4, 4].
Let p̄ ≜ (1, 1), ψ̄1 ≜ (−1/3, 0), and ψ̄2 ≜ (0, 0), and let

x̄i(p, π) ≜ argmax
xi

ũi(xi)
∣∣∣ p · xi ≤ p · ωi + θiπ ∀i (56)

where ũi(xi) ≜ vi(xi) + ψ̄i · xi = ln(xi1) + xi2 ∀i (57)

=⇒ x̄i1(p, π) = min
(3p1 + π

2p1
,
p2
p1

)
∀i, (58)

x̄i2(p, π) = max
(
0,

3p1 + π

2p2
− 1
)

∀i. (59)

Note that the specified externality weight of ψ̄1
1 = −1/3 cancels out the +x11/3 term

of (48), leaving the maximand ũi(xi) equal for both i. The individuals’ demand
functions are then identical because the individuals also have the same endowments
and profit shares.

We will now show that (p̄, {x̄i(·)}(n)) is a CESE of E (n).

To take care of the preliminaries, first observe that demand function profile {x̄i(·)} is
admissible in E . As noted following Definition 3, it follows that {x̄i(·)}(n) is admissible
in E (n). Observe also that {x̄i(·)}, and thus {x̄i(·)}(n), is locally C1 around (p̄, π) for
any π ≥ 0.

Next, let us confirm that p̄ is a WES of E and demand function profile {x̄i(·)}.
From (54), y(p̄) = (−1, 2). Also, ũi(xi) is strictly increasing for both i, so both
individuals exhaust their budgets at any p, π. Thus π̄ ≜ π(p̄, x̄(·)) = p̄ · y(p̄) = 1.
x̄(p̄, π̄) = s(p̄) = (2, 2), confirming that p̄ is a WES.

Then, by substituting p · y(p) for π in (59) and summing across i, we have aggre-
gate implicit demand χ̄(p). From here, though we will not work through the details,
it is straightforward to find excess demand z̄(·) (≜ χ̄(·) − s(·)). With normalized
excess demand ˆ̄z(·) defined as in Definition 5, we can then confirm that p̄ is regular
by Definition 7.

Finally, by Proposition 2, it follows that p̄ is also a regular WES of
(E (n), {x̄i(·)}(n)).

What makes the proposed (p̄, {x̄i(·)}) a CESE and not merely a regular WES is that
ψ̄ = ψ(p̄, x̄(·)). This can be calculated from the Definition (43) of ψ(·) (and the prior
Definition 42 of G(·)), but a more intuitive approach is as follows.

Let G̃(n)(p, x(·)) denote an L×L (here, 2×2) matrix mapping individual demand-
changes into changes to equilibrium prices, in economy E (n), given initial conditions
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in which aggregate demand is x(·) and prices are a regular WES p of (E (n), x(n)(·)).5
Since excess demand is h.o.d. 0, we can without loss of generality fix pL, i.e. require
that G̃(·) have a bottom row of zeroes.

Now observe that x̄i2(p̄, π̄) > 0 ∀i. The quasilinearity of (57) guarantees that, at
(p̄, π̄), each i’s marginal purchases are exclusively of good 2. Therefore

δ(p̄, x̄(·)) = (0, 1/p̄2)
T = (0, 1)T . (60)

This in turn implies that if one individual i reduces xi2, this simply increases
profits, which others spend entirely on good 2. Supply levels do not change, and
neither do prices. (A price-change would induce a supply-change.) In other words,
G(p̄, x̄(·))(0,−1)T = (0, 0)T . The upper-right entry of G(p̄, x̄(·)) therefore equals
zero.

The only remaining unknown entry of G(p̄, x̄(·)) is its upper-left, representing the
extent to which marginal purchases of good 1 increase the price of good 1. To find
it, we will consider a marginal individual demand-change proportional to (1,−1)T .
Since p̄1 = p̄2, this demand-change by i is orthogonal to p̄.

By s(p) from (55), ∂s1(p)/∂p1 = 1 and ∂s2(p)/∂p1 = −1. That is, recalling that
supply in E (n) equals ns(p), each marginal unit increase in p1 from the p̄ baseline
induces an n-unit increase in the supply of good 1 and an n-unit decrease in the
supply of good 2 in economy E (n).

Likewise, by (58)–(59), each marginal unit increase in p1 induces a 1-unit decrease
in demand for good 1 by all 2n− 1 consumers other than i. (Holding profits fixed, it
also induces a 1-unit increase in demand for good 2. We have not shown that profits
will in fact remain fixed as prices change; but we know that profit-changes will not
affect demand for good 1, as long as all consumers are consuming a positive quantity
of good 2.)

To maintain market clearing, p1 must rise by just enough to induce an increase
in s1, and a decrease in x−i1 , which sums to 1: the additional unit of good 1 which
consumer i has resolved to buy. That is, we must have

n∆p1 + (2n− 1)(∆p1) = 1 (61)

=⇒ ∆p1 =
1

3n− 1
. (62)

As noted above, changes in demand for good 2, starting from the baseline of (p̄, x̄(·)),
have no impact on supply levels. It follows that ψ1

2(p̄, x̄(·)) = ψ2
2(p̄, x̄(·)) = 0, as

5The tilde distinguishes G̃(n)(·) from G(·), which technically maps individual demand-changes
into what equilibrium price-changes would be if the individual specifying a demand-change also
responded to the price-change she herself induces. This distinction vanishes for large n.
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desired. Moreover, since w2(s) = 0, ψ2
1(p̄, x̄(·)) = 0 by (43), as desired. All that

remains is to show that ψ1
1(p̄, x̄(·)) = −1/3.

Recall that the marginal individual demand-shift of (1,−1) induces a marginal
price-shift of ∆p1 = 1

3n−1
. This price-shift, in turn, induces a marginal n

3n−1
-unit

increase in the equilibrium supply of good 1 and n
3n−1

-unit decrease in the equilibrium
supply of good 2. Recalling that w1(s) = s1 + 2s2, the marginal ethical impact of
marginal individual demand-shift (1,−1), from the perspective of consumer 1 (or
any of her clones), equals − n

3n−1
. As n → ∞, this ethical impact approaches −1/3.

By definition, therefore, ψ1
1(p̄, x̄(·))− ψ1

2(p̄, x̄(·)) = −1/3. But ψ1
2(p̄, x̄(·)) = 0. Thus

ψ1
1(p̄, x̄(·)) = −1/3, as desired.
With ψ̄ = ψ(p̄, x̄(·)), (p̄, x̄(·)) is a CESE of E and any of its replications.6,7

As this example illustrates, the impacts of consumer behavior after accounting for
general equilibrium effects can differ substantially from the impacts one finds when
one entirely ignores substitution by other parties. Inspecting w1(s) alone, one might
expect that consumer 1 assigns an externality weight of 1 to purchasing a unit of
good 1, and an externality weight of 2 to purchasing a unit of good 2, on any margin.
Here, by contrast, we find that she assigns a negative weight to good 1 and a weight
of 0 to good 2.

Likewise, external impacts in general equilibrium can differ substantially from
those found after accounting only for partial equilibrium effects. (55) and (58) record
an upward-sloping supply curve and a downward-sloping demand curve for both
goods, respectively, around p = (1, 1). A partial equilibrium analysis would therefore
conclude that, from consumer 1’s perspective, the ethical impact of purchasing a
unit of good 1 given prices (1, 1) lay somewhere in (0, 1), and the ethical impact of
purchasing a unit of good 2 lay in (0, 2).

3.2 Discussion

Proposition 4 states that each consumer i is indifferent between all demand functions
which demand, at the equilibrium price and profit level, the basket xi that maximizes
vi(xi) + ψi(p̄, x̄(·)) · xi subject to her budget constraint. The proposition thus offers
little guidance as to what sorts of behavior we might expect to see in equilibrium.
The (cross-)price elasticities of demand i chooses around the equilibrium price and
profit level are of no consequence for i, but because they affect x(·) and thus ψj for
j ̸= i, they affect other consumers’ best-response demand functions. That is, in a
CESE, consumers’ demands are highly sensitive to their fellow consumers’ arbitrary
choices of threatened out-of-equilibrium behavior. Exotic behavior may therefore be

6(p̄, ψ̄) is also an RCESE of E and its replications, where RCESE is a refinement of CESE defined
in §4 below. Furthermore, though we have not shown this here, this RCESE is unique.

7Detailed derivations and instructive graphs regarding this example can be found here. The
source code, which can be used to explore similar examples, can be found here.
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motivated in equilibrium by mutually best-responding threats with no basis in any-
one’s preferences over supply or own consumption. A refinement of CESE, designed
to rule out these “non-credible threats”, will be discussed in §4.

It is worth noting that even in the absence of such a refinement, Proposition 4 of-
fers complete guidance as to what basket an individual in a large economy, with given
preferences and a given endowment, should buy at the equilibrium prices and profit
level. Again, the individual should buy the xi that maximizes vi(xi) +ψi(p̄, x̄(·)) · xi
subject to her budget constraint. If our goal is simply to offer advice to informed con-
sumers with given ethical preferences (including ourselves), therefore, our analysis
can end here.

A second weakness of the above result, however, is that the informational require-
ments for computing ψi are demanding. In particular, i must know the gradient of
the aggregate Engel curve and either (a) the Jacobians of supply and demand with
respect to price or, equivalently, (b) the cross-price elasticity matrices of supply and
demand and the aggregate supply levels. Thankfully, these informational require-
ments can under some circumstances be relaxed. Circumstances under which an
ethical consumer need not know the gradient of the aggregate Engel curve will be
discussed following Proposition 6. Circumstances under which she need not know
the complete Jacobians or cross-price elasticity matrices would be a valuable avenue
for further research.

4 Equilibrium refinement

Let us refer to ψi as i’s externality vector. Let ψ denote the L×I externality matrix
whose column i equals ψi.

Given ψi, let us refer to

ũi(xi, ψi) ≜ vi(xi) + ψi · xi (63)

as i’s quasi-utility function. ũi(·), for any ψi ∈ RL, represents preferences over xi ∈
RL≥0. More precisely, it represents all-things-considered preferences over purchasing
choices: preferences incorporating both the private benefits of consuming a given
bundle and the external impacts of the production-changes induced by purchasing
that bundle.

As discussed in §3.2, we would like a refinement of CESE in which individuals
choose demand functions that maximize (63)—where ψi is defined as in (43)—not
only at (p̄, π̄) but at all (p, π), or at least all (p, π) near (p̄, π̄). We can motivate such
demand functions by giving each consumer a small degree of uncertainty about the
prices and profits she will face, while ensuring that the external impacts of a given
consumption decision are independent of these prices and profits.

Note the importance of maintaining this independence. Without it, an unex-
pected (p, π) may reveal a condition in which, as a result of shocks to production or
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others’ preferences, the ethical impact of purchasing a given bundle differs from what
it would be at the equilibrium (p̄, π̄). Thus an individual i with ethical preferences
may wish, conditional on some unexpected (p, π), to demand a bundle other than
the one that maximizes (63) for a ψi fixed at its definition from (43). In other words,
in a world with shocks that affect the implications of one’s purchasing decisions, i
would want to make her demands a function not only of prices and profits but also
of the shocks; and if we forbid this, i would want to make her demands sensitive to
the shocks to the extent that they can be discovered from realized prices and profits.
But .

*************************************************************************
INFORMAL NOTES

Here I want to define an refinement of CESE in which individuals choose demand
functions that maximize (63)—where ψi is defined as in (43)—not only at (p̄, π̄) but
at (preferably) all (p, π), or at least all (p, π) locally around (p̄, π̄). I expect that
the definition of and justification for this refinement will look something like the
following:

Definition 10. A robust CESE (RCESE) is a CESE in which each individual i
chooses a demand function i that satisfies (41), but in expected utility terms, given
a bit of uncertainty about what (p, π) she will face.

Proposition 5 (Refinement to RCESE).
In any RCESE, individuals choose the xi(·) that maximizes (63) not only at (p̄, π̄)
but at [all (p, π), or all (p, π) locally around (p̄, π̄)].

As long as people’s demand functions maximize (63) around equilibrium prices
and profits, the Jacobians of their demand functions in equilibrium are pinned down,
not just the quantities they demand precisely at equilibrium. Thus Jx is pinned
down. So without loss of generality, we can just consider cases in which each i
actually chooses the xi(·) that maximizes (63) everywhere. A commitment to choos-
ing different demands far away from equilibrium will have no bearing on others’
best-response demand functions.

Even if a formal refinement strategy like the above doesn’t work, though, we can
always just directly define an RCESE as one in which each i chooses the xi(·) that
maximizes (63) everywhere. (Maybe in this case it should just be called a “linear
CESE”, or LCESE, since we won’t have shown any formal sense in which they’re
more robust than other CESEs.) The value of Proposition 4 will then essentially
just be in demonstrating that (L/R)CESEs are actually CESEs.

END OF INFORMAL NOTES
*************************************************************************
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Note that, if wi(·) = 0, ψi(·) = 0 as well. In any RCESE, therefore, individuals
without ethical preferences adopt the demand functions that maximize vi(·), as in-
dividuals are assumed to do in the conventional Walrasian setting. Unlike in the
setting of §3 in which individuals choose arbitrary admissible xi(·), we do not have
to assume this explicitly.

RCESE is, therefore, a relatively straightforward generalization of Wal-
rasian equilibrium—given certain technicalities (namely regularity and locally C1

demand functions)—to the case in which individuals have preferences over total
supply levels. This will also be stated formally in Proposition 7, in the section below.

In any event, going forward we will restrict our attention to RCESEs. This lets us
reframe much of the model of §2 in simpler terms.

In particular, instead of positing that each i chooses an arbitrary admissible
demand function xi(·), we can simply posit that i chooses a vector ψi. We can then
define the demand function compatible with a given ψi as

xi[ψi](p, π) ≜ argmax
xi

ũi(xi, ψi)
∣∣ p · xi ≤ p · ωi + θiπ, 8 (64)

and let x[ψ](·) denote the sum of individual xi[ψi](·). With

π(p, ψ) ≜ π(p, x[ψ](·)), (65)

we can then define the implicit demand function compatible with a given ψ as

χi[ψ](p) ≜ argmax
xi

ũi(xi, ψi)
∣∣ p · xi ≤ p · ωi + θiπ(p, ψ), (66)

let χ[ψ](·) denote the sum of individual χi[ψi](·), and let

z[ψ](p) ≜ χ[ψ](p)− s(p). (67)

Finally, as with π(·) in (65), we can define

δ(p, ψ) ≜ δ(p, x[ψ](·)), (68)

and analogously extend (43) and the preceding terms—defined there as functions of
admissible aggregate demand functions x(·)—to be defined with externality matrices,
and not only explicit aggregate demand functions, in their second arguments.

Finally, we can define (p, ψ) to be an RCESE if (p, {xi[ψi](·)}) is an RCESE. Or,
equivalently,

8Expression (64) will be defined for all ψi if vi(·) is strictly concave. If vi(·) is quasilinear in
good L, xi[ψi](·) will be defined as long as ψiL ̸= −∂vi/∂xiL. Observe that xi[ψi](·) will be admissible
whenever it is defined.
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Definition 11. Given ψ̄, let p̄ be a regular WES of economy E and demand function
profile {xi

[ψ̄i]
(·)}. Then (p̄, ψ̄) is an RCESE of E if each xi[ψi](·) is defined and locally

C1 around (p̄, π̄), with

ψ(p̄, ψ̄) = ψ̄. (69)

As noted at the end of §3, there are circumstances under which a consumer does
not need to know the gradient of the aggregate Engel curve in order to compute her
optimal demands. One such circumstance is as follows.

Proposition 6 (Non-satiation in RCESE given no aggregate inferior goods).
Given an RCESE (p̄, ψ̄), suppose δ(p̄, ψ̄) ≥ 0L. Then ψ̄i ̸≪ 0 ∀i, and all individuals
exhaust their budgets.

Proof. For all (p, ψ), we have G(p, ψ)δ(p, ψ) = 0L, and thus

ψi(p, ψ) · δ(p, ψ) = ∇wi(s(p)) · Js(p)G(p, ψ)δ(p, ψ) = 0 ∀i. (70)

Since δ(p̄, ψ̄) ≥ 0L, it follows that ψi(p̄, ψ̄) ̸≪ 0. Because vi(·) is strictly increasing
in all goods for all i, it follows that for every i, there is at least one good in which i
is nonsatiated in equilibrium. Therefore all individuals exhaust their budgets.

Proposition 6 tells us that as long as δ ≥ 0—that is, as long as each good ℓ is
not “inferior in aggregate”, in that xℓ is not locally decreasing in the profit rate—
then each i can infer that it will be optimal for her to exhaust her budget. As a
result, i does not need to choose her demands by constructing G, and then ψi, using
known δ. Instead, i can recognize that any generalized inverse G̃ of −Jz satisfies
−Jz(p̄)G̃∆xi = ∆xi for ∆xi : p̄ · ∆xi = 0, and thus that G̃ captures the price-
impacts,9 and pins down the supply impacts, of demand choices among bundles that
exhaust i’s budget. Therefore, in this setting,

x[ψi](p, π) = argmax
xi

ũi(xi, ψ̃i)
∣∣ p · xi = p · ωi + θiπ (71)

for any ψ̃i =
(
Js(p̄)G̃

)T∇wi(s(p̄)), where G̃ is an arbitrary generalized inverse of
−Jz(p̄).

Corollary 6.1 (Non-satiation in RCESE given additive separability).
Suppose that, for all i, vi(·) is additively separable (and that the standard conditions
on vi(·) are met). Then, in any RCESE (p̄, ψ̄), ψ̄i ̸≪ 0 ∀i, and all individuals exhaust
their budgets.

9Up to rescaling. Without loss of generality, we can restrict ourselves to price impacts with
∆pL = 0 by imposing that the bottom row of G̃ equal 0TL.
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Proof. The additive separability of the vi(·) and thus of the ũi(·) implies that, at
any (p, ψ), no good is inferior for any i (given that xi

[ψ̄i]
(·) exists, which it must by

the assumption that (p̄, ψ̄) is an RCESE). Therefore no good is inferior in aggregate.
The result then follows from Proposition 6.

It may be tempting to try to guarantee that individuals exhaust their budgets
by positing that wi(·) is nondecreasing in at least one good for each i, or imposing
some other assumption of this kind. Unfortunately, however, after accounting for the
effects of buying one good on the equilibrium quantities of other goods, purchasing
goods for which wi(·) is nondecreasing (or even increasing) may do harm from i’s
perspective, and purchasing goods for which wi(·) is decreasing may do good. There
does not appear to be any straightforward relationship between assumptions on the
{wi(·)} and satiation.

5 Equilibrium existence

As noted in §4, if there are no “ethical consumers”, then RCESE is essentially equiv-
alent to Walrasian equilibrium, subject to certain technicalities. We can state this
result more formally:

Proposition 7 (RCESE generalizes Walrasian equilibrium).
Let p̄ be a Walrasian equilibrium of an economy E with wi(·) = 0 ∀i. Then, if p̄ is
regular and xi[0L](p, π) is C

1 around (p̄, p̄ · y(p̄)) for all i, then (p̄, 0L×I) is an RCESE
of E.

Proof. Because p̄ is a regular Walrasian equilibrium, p̄ is a regular WES (with π =
p̄ ·y(p̄)). Because each vi(·) is strictly quasiconcave, each xi[0L](·) is defined; and each

xi[0L](·) is locally C1 by assumption. Finally, because each wi(·) = 0, each ψi(·) = 0L,
by (43). Thus ψ(p̄, 0L×I) = 0L×I .

Determining when an RCESE exists in a less trivial setting is difficult. However, we
can show existence under certain conditions.

Recalling the definition of P in (4), let

pℓ ≜ min
p∈P

pℓ. (72)

Because P is compact and p≫ 0 ∀p ∈ P , (72) is defined and positive for each ℓ.

Proposition 8 (Existence of RCESE under separability and quasilinearity).
Suppose every individual i has a consumption utility function vi(·) of the form

vi(xi) =
L−1∑
ℓ=1

ṽiℓ(x
i
ℓ) + ti · xi, (73)
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where, for all ℓ < L, ṽiℓ(·) is C2, strictly increasing, and strictly concave, and satisfies

the lower and upper Inada conditions. Then, for each i, there exists a bound ¯̄ψi such
that, if for all ℓ < L

tiL >
(
tiℓ +

¯̄ψiℓ

)/
pℓ and (74)

ωiℓ > ṽi′−1
ℓ

(
pℓ t

i
L − tiℓ − ¯̄ψiℓ

)
, (75)

then an RCESE (p̄, ψ̄) exists.

Furthermore, in any such RCESE, ψ̄iℓ ∈ [− ¯̄ψi, ¯̄ψi] ∀i, ℓ < L and ψiL = 0 ∀i.

Proof. See Appendix A.5.

Appropriate ¯̄ψi bounds are constructed in the course of the proof, but unfortunately
they cannot be stated simply.

Thus RCESEs exist under at least some conditions beyond the setting in which
they reduce to Walrasian equilibria. Though the conditions required for Proposition
8 are highly restrictive, there does not appear to be any strong reason to believe that
RCESEs do not exist much more widely.
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Appendices

A Proofs

A.1 Proof of Proposition 1

Given an economy E and an admissible aggregate demand function x(·), consider
the excess demand function

z(p) = x(p, π(p, x(·)))− s(p)

as defined by (31).
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First, let us show that z(p) is continuous in p. This will follow directly from showing
that π(p, x(·)) is continuous in p.

Recall from (12) that

π(p, x(·)) = π : Z(p, π, x(·)) = 0, (76)

where

Z(p, π, x(·)) ≜ p · x(p, π)− p · s(p). (77)

Suppose by contradiction that π(p, x(·)) is not continuous in p. Then there exists a
p̄ and a δ > 0 such that, for all ϵ > 0,

∃p ∈ Nϵ(p̄) : π(p, x(·)) ̸∈
(
π(p̄, x(·))− δ, π(p̄, x(·)) + δ

)
, (78)

where Nϵ(p) denotes the neighborhood of radius ϵ around p.
For every natural n > 0, we can choose a pn ∈ N1/n(p̄) such that either

π(pn, x(·)) ≥ π(p̄, x(·)) + δ or (79)

π(pn, x(·)) ≤ π(p̄, x(·))− δ. (80)

There must thus be either an infinite subset ν of the naturals such that

π(pn, x(·)) ≥ π(p̄, x(·)) + δ ∀n ∈ ν (81)

or an infinite subset ν of the naturals such that

π(pn, x(·)) ≤ π(p̄, x(·))− δ ∀n ∈ ν. (82)

Let ν be an infinite subset of the naturals such that (81) holds, and consider the
sequence {(pn, π(p̄, x(·)) + δ)}n∈ν . Because Z(p, π, x(·)) is strictly increasing in π,
and π : Z(pn, π, x(·)) = 0 is no less than π(p̄, x(·)) + δ, we have

Z
(
pn, π(p̄, x(·)) + δ, x(·)

)
≤ 0 ∀n ∈ ν. (83)

Because Z(p, π, x(·)) is continuous in p, however, and because pn → p̄,

{Z
(
pn, π(p̄, x(·)) + δ, x(·)

)
}n∈ν → Z(p̄, π(p̄, x(·)) + δ) > 0, (84)

with the inequality holding because Z(p̄, π(p̄, x(·))+δ) = 0 and Z(p, π, x(·)) is strictly
increasing in π. (83) contradicts (84), so there is no infinite subset of the naturals
such that (81) holds.

Analogous reasoning proves that there is no infinite subset of the naturals such
that (82) holds.
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Therefore π(p, x(·)) is continuous in p. And thus z(p), as the composition of
continuous functions, is also continuous in p.

Because x(p, π) is h.o.d. 0 in (p, π) and s(p) is h.o.d. 0 in p, Z(p, π, x(·)) is h.o.d. 0
in (p, π). In particular, if Z(p, π, x(·)) = 0, Z(kp, kπ, x(·)) = 0 ∀k. It follows that
π(p, x(·)) is is h.o.d. 1 in p.

Thus

z(kp) = x(kp, π(kp, x(·)))− s(kp) (85)

= x(kp, kπ(p, x(·)))− s(kp)

= x(p, π(p, x(·)))− s(p)

= z(p);

z(p) is h.o.d. 0 in p.

By construction of π(·), p · z(p) = 0 ∀p≫ 0.

Because the production possibility set (and thus the supply possibility set) is com-
pact,

∃s̄ > 0 : sℓ(p) < s̄ ∀ℓ, p≫ 0. (86)

It then follows from the fact that xℓ(p, π) ≥ 0 ∀ℓ, p≫ 0, π ≥ 0 that

zℓ(p) > −s̄ ∀ℓ, p≫ 0. (87)

Consider a sequence of positive prices {pn} → p, for some p ̸= 0 such that pℓ = 0 for
some ℓ. Suppose by contradiction that it doesn’t hold that{

max
k

(xk (p
n, π (pn, x(·))))

}
n
→ ∞.

Hence, there exists M > 0 such that 0 ≤ xk (p
n, π (pn, x(·))) ≤ M , for all n and

all k. In particular, since individual demands are nonnegative, it follows that in-
dividual I’s demand for every good is also bounded from above by M , that is,
0 ≤ xIk (p

n, π (pn, x(·))) ≤M for all n and all k.
Note that, since ωI ≫ 0 and p ̸= 0, it follows that limn→∞ pn·ωi+θiπ(pn, x(·)) > 0.
We now show that the upper bound M in the consumption of any good implies

that I consumes zero of any of the goods whose price does not converge to zero. Let
ℓ0 ∈ L0 = {1 ≤ ℓ ≤ L; pnℓ → 0} denote a good whose price converges to zero, and
ℓ1 ∈ {1, . . . , L} \L0 denote a good whose price does not converge to zero. Note that
if {xIℓ1 (p

n, π (pn, x(·)))}n is bounded from below by any positive value x̄Iℓ1 > 0, then,
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since consumption for goods are bounded from above by M and uI is C1, strictly
increasing, and concave, it follows that

∂uI

∂xℓ1
(xI(pn, π(pn, x(·)))) ≤ ∂uI

∂xℓ1
(M, . . . ,M, x̄Iℓ1 ,M, . . . ,M) <∞.

On the other hand, for good ℓ0, we have

∂uI

∂xℓ0
(xI(pn, π(pn, x(·)))) ≥ ∂uI

∂xℓ1
(Meℓ0) > 0.

Hence, we must have that, for n sufficiently large,

∂uI

∂xℓ0
(xI(pn, π(pn, x(·))))

∂uI

∂xℓ1
(xI(pn, π(pn, x(·))))

≥

∂uI

∂xℓ0
(Meℓ0)

∂uI

∂xℓ1
(M, . . . ,M, x̄Iℓ1 ,M, . . . ,M)

>
pnℓ0
pnℓ1
,

And so the first order conditions of I’s problem cannot be satisfied if the consumption
of ℓ1 is positive in the limit. Thus, it must hold that{(

xIℓ1 (p
n, π (pn, x(·)))

)}
n
→ 0,

that is, individual I’s equilibrium consumption of every good whose price goes doesn’t
go to zero converges to zero.

Therefore, individual I exhausts his budget (due to local nonsatiation), has a
budget that converges to a positive value, and spends it entirely on goods whose
prices converge to zero. This implies that there exists ℓ ∈ L0 such that{(

xIℓ (p
n, π (pn, x(·)))

)}
n
→ ∞.

And since aggregate demand for every good is weakly bigger than individual I’s
demand for any good, it follows that{

max
k

(xk (p
n, π (pn, x(·))))

}
n
→ ∞,

a contradiction.
Since demands by consumers i < I cannot be negative, and supply levels are

bounded above, we have {
max
k

(
zk(p

n))
}
n
→ ∞. (88)
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It follows by Mas-Colell et al. (1995), Proposition 17.C.1 that ∃p̄ ≫ 0 : z(p̄) = 0.
By definition, p̄ is a WES.

Given E and x(·) as above, consider (E (n), x(n)(·)). Aggregate excess demand in the
replicated setting equals

z(n)(p) = nx(p, π(n)(p, x(n)(·))/n)− ns(p), (89)

where aggregate supply in the replicated economy equals ns(p) because the endow-
ments and production capacities have both been multiplied by n, and where

π(n)(p, x(n)(·)) ≜ π : x(n)(p, π) = ns(p) (90)

= π : x(p, π/n) = s(p)

= n
(
π : x(p, π) = s(p)

)
= nπ(p, x(·)). (91)

Substituting (91) into (89), we have z(n)(p) = nz(p). It follows immediately that p
is a WES of (E , x(·)) iff it is a WES of (E (n), x(n)(·)), for any n ≥ 1.

Finally, because z(p) is h.o.d. 0 in p, any positive rescaling of p̄ is also a WES. In

particular, ˙̄̂p is a WES. Thus ˆ̄p is a normalized WES.

Conversely, if ˆ̄p is a normalized WES, any positive rescaling of ˙̄̂p, including p̄, is
a WES.

A.2 Proof of Proposition 2

The proof follows the structure of that of Proposition 17.D.5 of Mas-Colell et al.
(1995).

Given E , let
˜
xI(p, π, ωI) denote the unique admissible demand function for I in

E(ωI). Also, given ({xi(·)}I−1
i=1 , x̄

I(·)) ∈ {Ai(E)}, observe that, for all ωI , xi(·) ∈
Ai(E(ωI)) ∀i < I. Let

˜
ẑ(p̂, ωI) ≜ I

[
x−I( ˙̂p, π( ˙̂p, x(·))) +

˜
xI( ˙̂p, π( ˙̂p, x(·)), ωI)− ω̂−I − ω̂I − y( ˙̂p)

]
. (92)

We will first show that Rank(J
˜
ẑ,ωI (p̂, ω

I)) = L− 1 for all (p̂, ωI) with s( ˙̂p) ≫ 0 and
ωI ≫ 0.

Given p̂, ωI ≫ 0, for every ℓ < L consider the marginal change to ωI

∂ℓω
I ≜ p̂ℓeL − eℓ. (93)
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Because p ·∂ℓωI = 0, endowment-shift ∂ℓω
I will leave I’s wealth unchanged at prices

p, and thus, fixing p, I’s demands
˜
xI unchanged at any given profit level. Thus,

fixing p, ∂ℓω
I induces no shift to the profit level:

p · (x−I(p, π) +
˜
xI(p, π, ωI)) = p · (ω + y(p)) (94)

=⇒ p · (x−I(p, π) +
˜
xI(p, π, ωI + ∂ℓω

I)) = p · (ω + ∂ℓω
I + y(p)).

With ∂ℓω
I inducing no change to demand—or production, since p is fixed and y

is a function of p—the change it induces to
˜
ẑ is precisely the first L − 1 entries of

−∂ℓωI . This is the (L−1)-length vector with a 1 in place ℓ < L and zeroes elsewhere.
This space of marginal changes to

˜
ẑ—which can be induced by marginal changes to

ωI , holding p̂ fixed—spans (indeed is the canonical basis of) RL−1.
Thus Rank(J

˜
ẑ,ωI (·)) = L− 1. And thus, as long as J

˜
ẑ,p̂(p̂, ω

I) is defined for some
p̂, ωI ≫ 0, we have Rank(J

˜
ẑ,ωI (p̂, ω

I)) = L− 1.
By assumption, Js(p) is defined for all p with s(p) ≫ 0. Furthermore, x(p, π) is

differentiable in p and π. To show that χ(p) (= x(p, π(p, x(·))) is differentiable in p
around a p̄ : s(p̄) ≫ 0, we will now show that π(p, x(·)) is differentiable in p around
such a p̄.

Let

h(p, π) ≜ p ·
(
x(p, π)− s(p)

)
. (95)

Because s(·) and x(·) are C1 around (p̄, π) for any π, and because the composition of
C1 functions is C1, h(p, π) is C1 around (p, π). By construction of the profit function,
h(p, π) = 0. Also, because p ·x(p, π) is increasing in π for any admissible x(·), ∂h/∂π
is everywhere nonzero. Thus, by the implicit function theorem (IFT), the function
π(p, x(·)) such that h(p, π(p, x(·))) = 0 for p near p̄ is C1 on p near p̄.

J
˜
ẑ,p̂(p̂, ω

I) is thus defined for all p with s(p) ≫ 0. Mas-Colell et al. (1995),
Proposition 17.D.3 then tells us that, for almost every—i.e. all but a measure-zero
set of—ωI , we have Rank(J

˜
ẑ,p̂(p̂, ω

I)) = L − 1 whenever
˜
ẑ(p̂, ωI) = 0. That is,

any normalized WES ˆ̄p of (E(ωI), ({xi(·)},
˜
x(·, ωI))) with s( ˙̂p) ≫ 0 is regular. By

Proposition 1, any such WES is regular as well.

Finally, replication of an economy and demand function profile by n multiplies the
Jacobian of the corresponding normalized excess demand function, at any given p̂,
by n. A matrix is nonsingular iff it remains nonsingular after multiplication by a
nonzero constant. Therefore regularity is preserved under replication.

A.3 Proof of Proposition 3

Let p̄ be a regular WES of economy E and locally C1 demand functions
{x̄i(·)} ∈ Ai(E). Choose xi(·) ∈ Ai(E) that is C1 around (p̄, π̄).
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Let

h(π, p̂, α) ≜ ˙̂p ·
(
x̄( ˙̂p, π) + α

(
xi( ˙̂p, π)− x̄i( ˙̂p, π)

)
− s( ˙̂p)

)
. (96)

Because s(·), xi(·), and each x̄i(·) are C1 around ( ˙̄̂p, π̄/pL), and because the compo-
sition of C1 functions is C1, h(·) is C1 around (ˆ̄p, π̄/pL).

By construction of the profit function, h(π( ˙̄̂p, x̄(·)), p̂, 0) = 0. Also, be-
cause p · x(p, π) is increasing in π for any admissible x(·), ∂h/∂π is everywhere
nonzero. Thus, by the IFT, there is a unique, C1 function, which we will denote

π̂(p̂, α), such that π̂(ˆ̄p, 0) = π( ˙̄̂p, x̄(·)) and h(π̂(p̂, α), p̂, α) = 0 for all (p̂, α) near (ˆ̄p, 0).

Now, let

ẑ(p̂, α) ≜ I
[
x̄( ˙̂p, π̂(p̂, α)) (97)

+ α
(
xi( ˙̂p, π̂(p̂, α))− x̄i( ˙̂p, π̂(p̂, α))

)
− s( ˙̂p)

]
.

Because s(·), xi(·), and each x̄i(·) are locally C1, and π̂(·) is C1, it follows that ẑ(·) is
locally C1.

Because p̄ is a WES of (E , x(·)), ẑ(ˆ̄p, 0) = 0. Also, because p̄ is a regular WES,
the Jacobian of ẑ(·) is nonsingular at (ˆ̄p, 0). Thus, by the IFT, there exist ϵ1, ϵ2 > 0
such that, for every α ∈ (−ϵ1, ϵ1), there is a unique p̂ ∈ Nϵ2(ˆ̄p) such that ẑ(p̂, α) = 0.
Furthermore, defining

ĝ(α) ≜ p̂ : ẑ(p̂, α) = 0, α ∈ (−ϵ1, ϵ1), (98)

ĝ(·) is C1.
Thus

ẑ(ĝ(1/n), 1/n) = 0 ∀n ≥ n ≜ ⌊1/ϵ1⌋+ 1. (99)

It follows that ĝ(1/n) is a normalized WES, and (p̄Lĝ(1/n), p̄L) is a WES, of economy
E and aggregate demand function

x(·) ≜ x̄(·) + (xi(·)− x̄i(·))/n. (100)

It also follows that ĝ(1/n) is the unique normalized WES in Nϵ2(ˆ̄p).

Finally, because ẑ(·) is locally C1, and because its Jacobian determinant is nonzero
at (ˆ̄p, 0), there is an ϵ3 > 0 such that, for all (p̂, α) ∈ Nϵ3((ˆ̄p, 0)), its Jacobian
determinant is nonzero at (p̂, α). Therefore, as long as we pick ϵ1 and ϵ2 small
enough that √

ϵ21 + ϵ22 ≤ ϵ3, (101)
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we can guarantee that, as long as n ≥ ⌊1/ϵ1⌋ + 1, ĝ(1/n) is not only a WES but a
regular WES of (E , x(·)).

It then follows from Proposition 1 and the definition of n-replicated utility that,
as long as n ≥ ⌊1/ϵ1⌋+1, ĝ(1/n) is the unique normalized WES in Nϵ2(ˆ̄p), and from
Proposition 2 that it is a regular normalized WES, of (E (n), x̄−i(n)(·) + xi(n)(·)).

A.4 Proof of Proposition 4

Let p̄ be a WES of economy E and locally C1 demand function profile {x̄i(·)} ∈
{Ai(E)}.

Let n be large enough that E (n) is large with respect to {x̄i(·)}(n) and ˆ̄p. Then,

given n ≥ n, consider the change in u
i(n)
p̄ that i achieves by deviating to locally C1

demand function xi(·) ∈ Ai(E):

vi
(
xi(n)

(
p
(n)
p̄

(
xi(·)

)
, π(n)

(
p
(n)
p̄

(
xi(·)

)
, x̄−i(n)(·) + xi(n)(·)

)))
+ wi

(
ns
(
p
(n)
p̄

(
xi(·)

)))
−vi
(
x̄i(n)(p̄, π(n)(p̄, x̄(n)(·)))

)
− wi

(
ns(p̄)

)
. (102)

In steps, we will take the limit of (102) as n→ ∞ and determine when the expression
is nonpositive for any admissible choice of xi(·).

First, by definitions (24) and (29), and by the assumption that wi(·) is CRS,
(102) equals

vi
(
xi
(
p
(n)
p̄

(
xi(·)

)
, π
(
p
(n)
p̄

(
xi(·)

)
, x̄(·) + (xi(·)− x̄i(·))/n

)))
− vi

(
x̄i(p̄, π̄)

)
+nwi

(
s
(
p
(n)
p̄

(
xi(·)

)))
− nwi

(
s(p̄)

)
. (103)

By Proposition 3 and definition (39) of p
(n)
p̄ (·), we have

p
(n)
p̄ (xi(·)) = g(1/n) ≜ (ĝ(1/n), 1), (104)

where ĝ(·) is defined as in (98). Because g(α) is continuous and equals ˙̄̂p at α = 0,
and because xi(p, π) is h.o.d. 0 and π(p, x(·)) is h.o.d. 1 in p, the limit as n→ ∞ of
the first term of (103) equals

vi(xi(p̄, π̄)). (105)

Substituting (104) into the third term of (103), and replacing n with 1/α (where
α ≜ 1/n), the third and fourth terms equal

wi
(
s(g(α))

)
− wi

(
s(p̄)

)
α

. (106)
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Because wi(·), s(·), and g(·) are differentiable with s(g(0)) = s(p̄), the limit of
(106) as α → 0 equals

∂

∂α

[
wi(s(g(α)))

]
α=0

, (107)

which, by the chain rule, equals

∇wi(s(p̄)) · Js(p̄)∇g(0). (108)

The first and second of these partial derivatives is given directly by the functions
wi(·) and s(·). We will now find the third: ∇g(0) = (∇ĝ(0), 0).

Recall the construction of ĝ(α) in (96)–(98). By the IFT,

∇ĝ(0) = −
(
Jẑ,p̂(ˆ̄p, 0)

)−1

Jẑ,α(ˆ̄p, 0), (109)

where ẑ(p̂, α) is defined as in (97) and Jẑ,p̂(ˆ̄p, 0) and Jẑ,α(ˆ̄p, 0) are the Jacobians of
ẑ(p̂, α) with respect to p̂ and α, respectively, evaluated at (ˆ̄p, 0).

Element ℓ, k of Jẑ,p̂(ˆ̄p, 0) (defined for ℓ, k < L) equals

∂x̄ℓ(
˙̄̂p, ˆ̄π)

∂pk
+
∂x̄ℓ(

˙̄̂p, ˆ̄π)

∂π

∂π̂(ˆ̄p, 0)

∂p̂k
− ∂sℓ(

˙̄̂p)

∂pk
. (110)

Element ℓ (< L) of Jẑ,α(ˆ̄p, 0) equals

∂x̄ℓ(
˙̄̂p, ˆ̄π)

∂π

∂π̂(ˆ̄p, 0)

∂α
+∆xiℓ, (111)

where

∆xi ≜ xi(p̄, π̄)− x̄i(p̄, π̄). (112)

Likewise, recalling the construction of π̂(p̂, α) following (96), and letting

ˆ̄π ≜ π( ˙̄̂p, x̄(·))
(
= π̄/p̄L, = π̂(ˆ̄p, 0)

)
, (113)

the IFT gives us

∂π̂(ˆ̄p, 0)

∂p̂k
= − 1

p̄ · ˆ̄δ

L∑
ℓ=1

p̄ℓ

(∂x̄ℓ( ˙̄̂p, ˆ̄π)
∂pk

− ∂sℓ(
˙̄̂p)

∂pk

)
(k < L), (114)

∂π̂(ˆ̄p, 0)

∂α
= − 1

p̄ · ˆ̄δ
p̄ ·∆xi, (115)
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where

δ̄ ≜ ∇πx̄(p̄, π̄), (116)

ˆ̄δ ≜ ∇πx̄(
˙̄̂p, ˆ̄π)

(
= p̄Lδ̄

)
. (117)

Note that the denominator terms p̄ · δ̄ must be nonzero by the admissibility of x̄(·).
Substituting (114) and (115) into (110) and (111), expression (109) can be rewrit-

ten

∇ĝ(0) =
[
MI

(ˆ̄δ × p̄− (p̄ · ˆ̄δ)IL
)]
∆xi, (118)

and so

∇g(0) =

[
MI

(ˆ̄δ × p̄− (p̄ · ˆ̄δ)IL
)

0TL

]
∆xi, (119)

where

M ≜
(
I
(
(p̄ · δ̄)

(
Jx̄,p(

˙̄̂p, ˆ̄π)− Js(
˙̄̂p)
)
−D(δ̄)

(
Jx̄,p(

˙̄̂p, ˆ̄π)− Js(
˙̄̂p)
)
p̄× 1L

)
IT
)−1

.

(120)

Let G denote the matrix coefficient on ∆xi in (119). We will now provide an alter-
native, and in some ways simpler, characterization of G.

Define

π(p, α) ≜ π
(
p, x̄(·) + α(xi(·)− x̄i(·))

) (
= pL π̂(p̂, α)

)
, (121)

x(p, α) ≜ x
(
p, π(p, α)

)
, (122)

and define xi(p, α) likewise. Since π̂(p̂, α), as defined following (96), is differentiable
and π(p, x(·)) is h.o.d. 1 in p, π(·) is differentiable. Thus x(p, α) and xi(p, α) are
differentiable.

Now observe that, for all α ≤ 1/n, the following hold exactly:

x̄(g(α), α) + α(xi(g(α), α)− x̄i(g(α), α)) = s(g(α)), (123)

x̄(p̄, 0) = s(p̄) (124)

=⇒ s(g(α))− s(p̄)−
(
x̄(p̄, 0)− x̄(g(α), α)

)
= α(xi(g(α), α)− x̄i(g(α), α)). (125)

Dividing both sides of (125) by α and taking the limit as α → 0, we have

−Jz(p̄)∇g(0) + δ̄
(∂π(p̄, 0)

∂α

)
= ∆xi. (126)
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Because ∇g(0) = G∆xi and ∂π(p̄, 0)/∂α = ∂π̂(ˆ̄p, 0)/∂α, we then have

−Jz(p̄)G∆xi −
p ·∆xi

p · δ̄
δ̄ = ∆xi. (127)

Thus, for ∆xi satisfying

p̄ ·∆xi = 0, (128)

we have

−Jz(p̄)G∆xi = ∆xi. (129)

Observe that Js(p̄)p̄ = 0. If prices all rise in proportion to their current levels,
then the price vector has simply been rescaled, and because s(p) is h.o.d. 0, supply
levels will not change. Jx̄(p̄)p̄ = 0 likewise, by the definition of x and the fact that
χ(p) is h.o.d. 0. So it follows from the definition (31) of z(p) that

Jz(p̄)p̄ = 0. (130)

Also, for any ∆p not proportional to p̄, we have ∆p̂ = p̂ − ˆ̄p ̸= 0L−1. Because
p̄ is a regular WES, Jẑ(ˆ̄p) is of full rank, so Jẑ(ˆ̄p)∆p̂ ̸= 0L−1. It follows that any
marginal price-change ∆p not proportional to p̄ induces a change to excess demands,
and thus that Jz(p̄)∆p ̸= 0L. Thus

Rank(Jz(p̄)) = L− 1. (131)

Returning to (129), we can now conclude thatG is a generalized inverse of−Jz(p̄).
Furthermore, from (127), at ∆xi = −δ̄ we have

−Jz(p̄)Gδ̄ + δ̄ = δ̄. (132)

So Gδ̄ either equals 0L or is proportional to p̄. But we know that the bottom row of
G consists of zeroes, so the last entry of Gδ̄ equals 0. So

Gδ̄ = 0L. (133)

We will now construct the unique generalized inverse G of Jz(p̄) whose bottom
row consists of zeroes and for which Gδ̄ = 0L.

Let UNV T denote a singular value decomposition of Jz(p̄) with Nℓℓ ̸= 0 for ℓ < L
and NLL = 0. Because G is a generalized inverse of Jz(p̄), we must by (131) have

G = V

[
N−1

1 A
B C

]
UT , (134)
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where N1 is the (L − 1) × (L − 1) principal submatrix of N and A, B, and C are
(L− 1)× 1, 1× (L− 1), and 1× 1 respectively.

Since V is invertible, (133) reduces to[
N−1

1 A
B C

]
¯̄δ = 0L (135)

=⇒ Aℓ = −
¯̄δℓ
¯̄δL

1

Nℓℓ

, ℓ < L, and (136)

C = − 1
¯̄δL

L−1∑
ℓ=1

Bℓ
¯̄δℓ, (137)

where ¯̄δ ≜ UT δ̄.
We will now impose the constraint that the bottom row of G consists of zeroes.

Since UT is invertible, the bottom row of G consists of zeroes iff the bottom row of

V

[
N−1

1 A
B C

]
(138)

consists of zeroes. This in turn implies

Bℓ = − VLℓ
VLL

1

Nℓℓ

, ℓ < L. (139)

By (137), this also gives us C. G is thus fully constructed.

Substituting G∆xi for ∇g(0) into (108), we have ψi ·∆xi, where

ψi =
(
Js(p̄)G

)T∇wi(s(p̄)). (140)

Thus the limit of (102) as n→ ∞ equals(
vi(xi(p̄, π̄)) + ψi · xi(p̄, π̄)

)
−
(
vi(x̄i(p̄, π̄)) + ψi · x̄i(p̄, π̄)

)
. (141)

And thus (p̄, {x̄i(·)}) is a CESE iff x̄i(p̄, π̄) maximizes vi(xi(p̄, π̄)) + ψi · xi(p̄, π̄),
among feasible xi(p̄, π̄), for all i.

Finally, we can express (140) in elasticity terms. For ∆xi : p̄ ·∆xi = 0,

−Jz(p̄)G∆xi = ∆xi (142)

=⇒ D(s(p̄))(σ(p̄)− ε(p̄, x̄(·)))D(p̄)−1G∆xi = ∆xi (143)

=⇒ (σ(p̄)− ε(p̄, x̄(·)))ϕD(s(p̄))−1∆xi = D(s(p̄))−1∆xi, (144)

where

ϕ ≜ D(p̄)−1GD(s(p̄)) (145)
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is the generalized inverse of (σ(p̄) − ε(p̄, x̄(·))) with ϕD(s(p̄))−1δ̄ = 0 and whose
bottom row consists of zeroes. Substituting

G = D(p̄)ϕD(s(p̄))−1, (146)

Js(p̄) = D(s(p̄))σD(p̄)−1 (147)

into (140), we have

ψi =
(
D(s(p̄))σ(p̄)ϕD(s(p̄))−1

)T∇wi(s(p̄)). (148)

The diagonal matrices cancel.

A.5 Proof of Proposition 8

Suppose the utility functions and endowments of an economy E satisfy assumptions
(73)–(75) with respect to some bounds { ¯̄ψi}, and choose an externality matrix ψ̄

with |ψiℓ| < ¯̄ψi ∀i, ℓ < L and ψ̄iL = 0 ∀i. (We will show that there is a WES p̄ of
(E , x[ψ̄](·)) and that ψ(p̄, ψ̄) lies within bounds independent of the {tiℓ} and {ωiℓ}.
These bounds will constitute those used in the statement of the proposition.)

For any such ψ̄, each i will have quasi-utility function

ũi(xi, ψ̄i) =
L−1∑
ℓ=1

(
ṽiℓ(x

i
ℓ) + tiℓx

i
ℓ + ψ̄iℓx

i
ℓ

)
+ tiLx

i
L. (149)

Our assumptions guarantee that the resulting demand function xi
[ψ̄i]

(·) exists and is

admissible for all i (as noted in Footnote 8). By Proposition 1, there is a WES p̄≫ 0
of (E , x[ψ̄](·)).

Furthermore, because ψ̄iL = 0 ∀i, individuals always exhaust their budgets; so
profits equal p · y(p) for all p. By the first-order conditions on implicit demand,
therefore, for any p at which χi

[ψ̄]ℓ
(p) > 0 ∀ℓ, we have

tiL
pL

=
ṽiℓ

′(χi
[ψ̄]ℓ

(p)) + tiℓ + ψ̄iℓ

pℓ
(150)

=⇒ χi[ψ̄]ℓ(p) = ṽiℓ
′−1
( pℓ
pL
tiL − tiℓ − ψ̄iℓ

)
, ℓ < L; (151)

χi[ψ̄]L(p) =
1

pL

(
p · ωi − θip · y(p)−

L−1∑
ℓ=1

χi[ψ̄]ℓ(p)
)
. (152)

Note that p must therefore have the argument of ṽiℓ
′−1(·) in (151) positive for all

ℓ < L (as it does if p ∈ P , by (74)). And for all ℓ < L, ṽiℓ
′(·) is one-to-one on R>0 (by

the upper and lower Inada conditions), C1, and has a derivative that is everywhere
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nonzero. Thus, at such a p, ṽiℓ
′−1(·) is defined and also C1, by the inverse func-

tion theorem. So from (151), χi[ψ]ℓ(p) is C1 in p and ψ. From (152), χi[ψ]L(p) is as well.

The lower Inada conditions on the ṽiℓ(·), and the strict concavity, guarantee that, for
all p≫ 0, χi

[ψ̄]ℓ
(p) > 0 ∀ℓ < L. It follows that a WES p̄ must have sℓ(p̄) > 0 ∀ℓ < L.

A WES p̄ must thus have sL(p̄) > 0 as well. To see this, first recall that profit-
maximization requires F (y(p̄)) = 0. Because F (·) is differentiable, strictly increasing,
and strictly convex, JF (y) not only exists but is invertible for all y. Then because
F (·) is C1, it follows from the IFT that, for any ℓ < L, there is an ϵ̄ℓ > 0 such that,
for all ϵℓ ∈ (−ϵ̄ℓ, ϵ̄ℓ),

g(ϵℓ) ≜ ϵL : F
(
y(p̄)− ϵℓeℓ + ϵLeL

)
= 0 (153)

is defined and differentiable, with

g′(0) =
(
∇F (y(p̄))

)
ℓ

/(
∇F (y(p̄))

)
L
. (154)

So, choosing a sufficiently small ϵℓ < sℓ(p̄), it would be feasible to cut the supply of
ℓ by ϵℓ, and increase the supply of L by approximately g′(0) ϵℓ, without changing the
supply of other goods.

Next, we will show that there exists an i (indeed, all i) for which

tiL
∂ũi(xi, ψ̄)/∂xiℓ

>
1

g′(0)
(155)

when xiL = 0 and xiℓ is compatible with equilibrium for ℓ < L. Because, by assump-
tion, ωi satisfies

tiL >
ṽi′ℓ (ω

i
ℓ) + tiℓ + ψ̄iℓ
pℓ

⇐⇒ ωiℓ > ṽi′−1
ℓ

(
pℓ t

i
L − tiℓ − ψ̄iℓ

)
∀ℓ < L (156)

(recalling that the argument of ṽiℓ
′−1(·) is positive by (74)), i prefers marginal pur-

chases of L to marginal purchases of any ℓ < L, given a price ratio in P , at the
endowment point. Given xiL = 0 and budget exhaustion (which follows, again, from
ψ̄iL = 0 ∀i), we must have xiℓ ≥ ωiℓ for some ℓ < L. Thus, since ṽiℓ

′(·) is concave,

tiL >
ṽi′ℓ (x

i
ℓ) + tiℓ + ψ̄iℓ
pℓ

=
1

pℓ

∂ũi(xi, ψ̄i)

∂xiℓ

for some ℓ. (155) then follows from the fact that pℓ ≤ g′(0) by definition.
Given budget exhaustion, the allocation induced by a WES p̄ must be efficient

(with respect to the ũi), by the first welfare theorem. But if xiL = sL(p̄) = 0, there
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is an ℓ < L such that ũi can be increased by shifting production marginally from
ℓ to L, in a feasible direction, without affecting ũj for j ̸= i. So s(p̄) ≫ 0 for any
WES p̄.

For any WES p̄, ˙̄̂p lies in P . This follows from s(p̄) ≫ 0, as following (5).
Also, the WES of (E , x[ψ̄](·)) is unique up to rescaling. This follows from the fact

that, for each i, x[ψ̄](·) maximizes a quasilinear (quasi-)utility function: see Hosoya
(2022), Theorem 1. Hosoya assumes that utility in goods ℓ < L is nondecreasing,
whereas we allow marginal utility in such goods to be negative at sufficiently large
values of xiℓ, because we may have ψiℓ < −tiℓ. But because each i’s demands are
identical to those that would obtain if marginal utility in each ℓ equaled 0 (rather
than a negative number) at such large values of xiℓ, Hosoya’s result holds in our
context.

There is thus a unique WES of (E , x[ψ̄](·)) in P . Let us denote it simply by p̄.
Because p̄ ∈ P , χi

ψ̄L
(p̄) > 0 ∀i. This follows from (156) as above.

We will now show that p̄ is regular.
Given k, ℓ < L, it follows from (151) that ∂χi

[ψ̄]ℓ
(p̄)/∂pk < 0 if k = ℓ and = 0

otherwise. So, letting

Jχ̂[ψ̄]
(ˆ̄p) ≜ IJχ[ψ̄]

(p̄)IT (157)

denote the upper-left (L − 1) × (L − 1) submatrix of Jχ[ψ̄]
(p̄), Jχ̂[ψ̄]

(ˆ̄p)q is, for any

q ∈ RL−1, an (L − 1)-length vector whose entries have opposite signs to those of q.
Jχ̂[ψ̄]

(ˆ̄p) is thus strictly negative definite.

Our assumptions guarantee that Jȳ(p) is positive semidefinite for p ∈ P (see
Mas-Colell et al. (1995), Proposition 5.C.1 (vii)). They thus also guarantee that
Js(p) is positive semidefinite for p ∈ P̃ . Jŝ(ˆ̄p) ≜ IJs(p̄)IT is therefore also positive
semidefinite:

q · Jŝ(ˆ̄p)q = (q, 0)T · Js(p̄)(q, 0)T ≤ 0 ∀q ∈ RL−1. (158)

Jẑ[ψ̄]
(ˆ̄p) = Jŝ(ˆ̄p)− Jχ̂[ψ̄]

(ˆ̄p) is thus positive definite, and therefore nonsingular.

As can be seen from (152), quasilinearity and the fact that χi
[ψ̄]L

(p̄) > 0 ∀i imply

δ̄ ≜ δ(p̄, ψ̄) = eL. Marginal income is spent entirely on L, whose price equals 1.
Because of the regularity of p̄, G(p̄, ψ̄) is defined. Let us likewise denote it by Ḡ,

for simplicity.
Finally, because Ḡ is defined, ψ(p̄, ψ̄) is defined. We will now find bounds on

ψ(p̄, ψ̄).
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Let Sn denote the n-dimensional unit sphere. Observe that some q ∈ SL−2 is an
(L− 1)-length vector with a norm of 1, and that q̌ ≜ IT q is an L-length vector with
a norm of 1 and a zero in the Lth place.

Given p ∈ P̃ and q̂ ∈ RL−1, let ψ̂(p, q̂) denote the I-vector with entry i equal to

ψ̂i(p, q̂) ≜ ∇wi(s(p)) · Js(p)IT q̂. (159)

In effect, ψ̂i(p, q̂) is the size of the ethical externality, for i, resulting from a marginal
price-change of q̂ that keeps the price of good L fixed, starting from normalized prices
p.

Since s(·) is C1 and wi(·) is C1 for all i, ψ̂(·) is a composition of continuous
functions and thus continuous. Therefore, given any (p, q̂) for which ψ̂(p, q̂) = 0I
and any ψ > 0, there exists an ϵ > 0 such that

max
(
|ψ̂(p̃, ˜̂q)|

)
< ψ ∀(p̃, ˜̂q) ∈ N̂ϵ(p, q̂), (160)

where N̂ϵ(p, q̂) denotes the ϵ-neighborhood around (p, q̂) in P × RL−1.
Fixing ψ, denote the supremum of such ϵ for each (p, q̂) with ψ̂(p, q̂) = 0I by

ϵ(ψ, p, q̂). Let

N̂(ψ) ≜ ∪{(p,q̂)∈P×RL−1 | ψ̂(p,q̂)=0I}Nϵ(ψ,p,q̂)(p, q̂), (161)

N(ψ) ≜
{(
p,

q̂

||q̂||

) ∣∣ (p, q̂) ∈ N̂(ψ), q̂ ̸= 0L−1

}
. (162)

N(ψ) ⊂ P × SL−2. Let us now show that N(ψ) is open in P × SL−2.

For any (p, q) ∈ N(ψ), we can find a q̂ ∈ RL−1 \ {0L−1} such that (p, q̂) ∈ N̂(ψ)
and

q̂

||q̂||
= q. (163)

As a union of open sets, N̂(ψ) is open in P × RL−1; so there exists an ϵ̂ > 0 such
that

N̂ϵ̂(p, q̂) ⊂ N̂(ψ). (164)

Now let

ϵ̃ ≜
ϵ̂√

1 + ||q̂||2
> 0. (165)

Also, in general, let Nϵ(p, q) denote the ϵ-neighborhood around (p, q) in P × SL−2.
Now choose any (p̃, q̃) ∈ Nϵ̃(p, q). We must have ||p̃ − p|| < ϵ̃ and ||q̃ − q|| < ϵ̃,

by the triangle inequality. We must thus have∣∣∣∣∣∣(p̃, q̃||q̂||)− (p, q||q̂||)∣∣∣∣∣∣ <√ϵ̃2 + (||q̂||ϵ̃)2 = ϵ̂, (166)
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also by the triangle inequality. By (163), q||q̂|| = q̂. (166) then tells us that
(p̃, q̃||q̂||) ∈ N̂ϵ̂(p, q̂)—and so, by (164), that(

p̃, q̃||q̂||
)
∈ N̂(ψ). (167)

Since q̃ ∈ SL−2, q̃ ̸= 0L−1; and since q̂ ̸= 0L−1 either, q̃||q̂|| ≠ 0L−1. So(
p̃,

q̃||q̂||∣∣∣∣∣∣q̃||q̂||∣∣∣∣∣∣
)

∈ N(ψ). (168)

And since q̃ ∈ SL−2, we have ||q̃|| = 1, and thus

q̃||q̂||∣∣∣∣∣∣q̃||q̂||∣∣∣∣∣∣ = q̃. (169)

So (p̃, q̃) ∈ N(ψ).
We have now shown that any (p, q) ∈ N(ψ) is surrounded by an open set in

P × SL−2 also contained in N(ψ). This completes the proof that N(ψ) is open in

P × SL−2.
Since P × SL−2 is compact and N(ψ) is open,

Q(ψ) ≜
(
P × SL−2

)
\N(ψ) (170)

is compact.

Recall that ψiℓ(p̄, ψ̄) =
(
Js(p̄)Ḡeℓ

)T∇wi(s(p̄)), and again, fix ψ. If (p̄, IḠeℓ) ∈ N̂(ψ),

then |ψiℓ(p̄, ψ̄)| ≤ ψ ∀i.
If not, observe that q̌ · Js(p)q̌ is continuous in p (since s(·) is C1) and in q. Also,

recall that Q(ψ) is compact. Finally, observe that (at least for this particular choice
of ψ) Q(ψ) is nonempty, since it contains at least(

p̄,
IḠeℓ

||IḠeℓ||

)
, (171)

by the supposition that (p̄, IḠeℓ) ̸∈ N̂(ψ). By the extreme value theorem, we can
thus define

m(ψ) ≜ min
(p,q)∈Q(ψ)

q̌ · Jȳ(p)q̌. (172)

Since Jȳ(p) is always positive semidefinite, m(ψ) ≥ 0. We will now show that m(ψ) >
0.
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For any (p, q) ∈ P × SL−2 for which q̌ · Js(p)q̌ = 0, and any τ ∈ R, we have, by
the positive semidefiniteness of Jȳ(p),

0 ≤ (q̌ − τJȳ(p)q̌) · Jȳ(p)(q̌ − τJȳ(p)q̌) (173)

=�����
q̌ · Jȳ(p)q̌ − 2τ q̌ · Jȳ(p)2q̌ + τ 2q̌ · Jȳ(p)3q̌ (174)

= − 2τ ||Jȳ(p)q̌||2 + τ 2q̌ · Jȳ(p)3q̌. (175)

We cannot have q̌ ·Jȳ(p)3q̌ < 0, or else (175) would be strictly negative for all τ > 0.
If q̌ ·Jȳ(p)3q̌ = 0, it follows immediately that ||Jȳ(p)q̌|| = 0. If q̌ ·Jȳ(p)3q̌ > 0, observe
that we must have

2||Jȳ(p)q̌||2 ≤ τ q̂ · Jȳ(p)3q̌ ∀τ > 0, (176)

and thus that, again, ||Jȳ(p)q̌|| = 0.

So if (p, q) is such that q̌ ·Jȳ(p)q̌ = 0, then Jȳ(p)q̌ = 0L−1. But then ψ̂(p, q) = 0I ;
so (p, q) ∈ N(ψ); so (p, q) ̸∈ Q(ψ). It follows that m(ψ) > 0, as desired.

Since P is compact,

p ≜ max
p∈P,ℓ

pℓ (177)

is defined. Furthermore, it follows from Ḡδ̄ = 0 that, for all ℓ, Ḡeℓ = Ḡb̄ℓ, where

b̄ℓ ≜ eℓ − p̄ℓδ̄ = eℓ − p̄ℓeL. (178)

b̄L = 0L. For ℓ < L, eℓ and eL are orthogonal, so ||b̄ℓ|| =
√
1 + p̄ℓ ≤

√
1 + p.

Note that p̄ · b̄ℓ = 0 ∀ℓ. Also, recall that p̄ ∈ P̃ (not just ∈ P ). Therefore Js(p̄)
is defined, and by definition of Ḡ,(

Js(p̄)− Jχ[ψ̄]
(p̄)
)
Ḡb̄ℓ = b̄ℓ (179)

=⇒
(
Ḡb̄ℓ
)
·
(
Js(p̄)− Jχ[ψ̄]

(p̄)
)
Ḡb̄ℓ =

(
Ḡb̄ℓ
)
· b̄ℓ. (180)

Since Jχ̂[ψ̄]
(ˆ̄p) is negative definite, and the Lth entry of Ḡb̄ℓ equals zero, (Ḡb̄ℓ) ·

Jχ[ψ]
(Ḡb̄ℓ) ≤ 0. So we have (

Ḡb̄ℓ
)
· Js(p̄)Ḡb̄ℓ ≤

(
Ḡb̄ℓ
)
· b̄ℓ (181)

=⇒
∣∣∣∣Ḡb̄ℓ∣∣∣∣ ( Ḡb̄ℓ∣∣∣∣Ḡb̄ℓ∣∣∣∣

)
· Js(p̄)

(
Ḡb̄ℓ∣∣∣∣Ḡb̄ℓ∣∣∣∣

)
≤ Ḡb̄ℓ∣∣∣∣Ḡb̄ℓ∣∣∣∣ · b̄ℓ (182)

Because
∣∣∣∣Ḡb̄ℓ/||Ḡb̄ℓ||∣∣∣∣ = 1, ||b̄ℓ|| ≤

√
1 + p, and the dot product of two vec-

tors cannot exceed the product of their norms, the right-hand side cannot exceed
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√
1 + p. Also, again because

∣∣∣∣Ḡb̄ℓ/||Ḡb̄ℓ||∣∣∣∣ = 1, the left-hand side must be at least
||Ḡb̄ℓ||m(ψ). So we have

||Ḡb̄ℓ||m(ψ) ≤
√

1 + p (183)

=⇒ ||Ḡb̄ℓ|| ≤
√

1 + p

m(ψ)
. (184)

So, for any choice of ψ, we know that, for each i and ℓ, either
∣∣ψiℓ(p̄, ψ̄)∣∣ ≤ ψ or

∣∣ψiℓ(p̄, ψ̄)∣∣ ≤ √
1 + p

m(ψ)
max
p∈P

[
∇wi(s(p)) · Jȳ(p)1L

]
. (185)

As usual, we know the maximum exists by the continuity of the functions involved,
the compactness of P , and the extreme value theorem.

Combining these bounds, we have

∣∣ψiℓ(p̄, ψ̄)∣∣ ≤ ¯̄ψi ≜ min
ψ≥0

(
max

(
ψ,

√
1 + p

m(ψ)
max
p∈P

[
∇wi(s(p)) · Jȳ(p)1L

]))
. (186)

Also, for L in particular, it follows immediately from b̄L = 0L that ḠeL = Ḡb̄L = 0L,
and thus that ψiL(p̄, ψ̄) = 0.

So, with

Ψ ≜ {ψ ∈ RL×I : |ψiℓ| ≤ ¯̄ψi ∀i, ℓ < L; ψiL = 0 ∀i}, (187)

we have ψ(p̄, ψ̄) ∈ Ψ.

Let Ψ characterize the { ¯̄ψi} with respect to which the {tiℓ} and {ωiℓ} satisfy conditions
(73)–(75). Given ψ ∈ Ψ, let

p(ψ) ≜ p ∈ P̃ : ẑ[ψ](p̂) = 0L (188)

denote the WES in P̃ compatible with ψ. Recall that such a WES will exist, be
unique up to rescaling (and thus unique in P̃ ), and be regular.

Because s(·) is C1 across P̃ and χ[·](·) is C1 in both arguments (given p ∈ P̃ ), so
is z[·](·). So therefore is ẑ[·](·), where, following (35),

ẑ[ψ](p̂) ≜ Iz[ψ]( ˙̂p). (189)

Recall also that Jẑ[ψ],p̂(p̂) is invertible for any (p̂, ψ) for which p̂ is a regular

normalized WES given ψ. So, by the IFT, p(·) is C1.

We will now show that G(p(ψ), ψ) is continuous in ψ throughout Ψ.
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Suppose it is not. Then there exist ψ̄, ψ ∈ Ψ such that

lim
ϵ→0

G
(
p(ψ̄ + ϵψ), ψ̄ + ϵψ

)
̸= G

(
p(ψ̄), ψ̄

)
. (190)

There must then be some ∆xi ∈ RL such that

lim
ϵ→0

G
(
p(ψ̄ + ϵψ), ψ̄ + ϵψ

)
∆xi ̸= G

(
p(ψ̄), ψ̄

)
∆xi— (191)

e.g., if the limit does not hold for some entry in column ℓ of G, ∆xi = eℓ. This in
turn implies

lim
ϵ→0

−Jz[ψ̄+ϵψ]

(
p(ψ̄ + ϵψ)

)
G
(
p(ψ̄ + ϵψ),ψ̄ + ϵψ

)
∆xi ̸= (192)

lim
ϵ→0

−Jz[ψ̄+ϵψ]

(
p(ψ̄ + ϵψ)

)
G
(
p(ψ̄), ψ̄

)
∆xi.

But this is impossible: the left-hand side equals ∆xi for all ϵ, by definition of G,
and the right-hand limit equals ∆xi because p(ψ) is continuous and −z[ψ](p) is C1

in p and ψ.

Defined on Ψ, ψ(p(ψ), ψ) is thus a continuous function from a nonempty, compact,
convex set to itself. By Brouwer’s fixed point theorem, it has a fixed point. By
construction, for any such fixed point ψ∗, (p(ψ∗), ψ∗) is an RCESE.
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