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Abstract

Recent work has explored the relationship between economic growth
and existential risk, using a model of population-driven endogenous
growth and directed technical change. Within such a model, under
moderate parameters, existential catastrophe is avoidable by a suffi-
ciently rapid transition from consumption to safety production; but
when the scale effect of existential risk is sufficiently large, existen-
tial catastrophe is inevitable. In a model with exogenous productiv-
ity growth, on the other hand, we find that existential catastrophe
given a fixed population is not inevitable—even though productivity
grows exogenously across the risk-increasing consumption sector and
the risk-decreasing safety sector and is therefore not directed. We also
find that existental catastrophe is avoidable regardless of the scale ef-
fect of existential risk.
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1 Introduction

Technological progress can bring both prosperity and danger. In particular, it
can produce “existential risk”: the risk of human extinction or a catastrophe
that otherwise irreversibly curtails the potential of humankind, such as a war
that permanently sends us back to the Stone Age (Bostrom (2002), Posner
(2004), and Farquhar et al. (2017)).

Aschenbrenner (2020) develops a model of endogenous growth and di-
rected technical change, involving a tradeoff between consumption and safety.
The production of consumption goods carries some risk of disaster, which
can be mitigated by spending on safety and developing safety technology.
He finds that, in such a model, the probability of existential catastrophe
depends critically on the scale effect of existential risk—that is, how pro-
portionally growing both consumption and safety affects existential risk. If
existential risk decreases with scale, no special concern for safety is required
for the hazard rate to fall to zero exponentially. If existential risk increases
with scale moderately, the existential hazard rate typically should follow an
inverted U-shape. Finally, if the scale effect of existential risk is too large
and the returns to research diminish too rapidly, it is impossible to avert an
eventual existential catastrophe.

Note that much previous work on the economics of catastrophic risk (Mar-
tin and Pindyck (2015, 2019) and Aurland-Bredesen (2019)) had made the
implicit assumption that the risk of catastrophe stays constant with scale.
This is a knife-edge assumption: holding safety spending constant as a frac-
tion of output only holds risk constant when the scale effect is exactly zero.
Aschenbrenner generalizes from this assumption, illustrating the divergent
dynamics of cases in which existential risk decreases, increases moderately,
or increases rapidly with scale.

Because of his use of a semi-endogenous growth model, however, Aschen-
brenner’s results depend on a continued exponential (though, in principle,
arbitrarily small) rate of population growth. This assumption stands in con-
trast to projections by the United Nations (2019) that the world population
will plateau toward the end of this century less than 50% above its cur-
rent level and remain at approximately this level for the foreseeable future—
potentially even declining. In this scenario, as explored by Jones (2020),
ideas-based growth models project stagnating or even regressing output.

I therefore explore a similar framework, retaining Aschenbrenner’s risk
model (including its potential for scale effects) but replacing the ideas-based
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endogenous growth model with a simple exogenous growth model in which
productivity grows at a constant rate indepenent of population size. Pro-
ductivity increases allow both consumption goods and safety goods to be
produced with ever less labor. The assumption of exogenous growth follows
other work on catastrophe mitigation, including that of Martin and Pindyck
cited above and of the Nordhaus and Sztorc (2013) model of climate change
abatement. Note, however, that Nordhaus models productivity growth as
declining to zero over the coming centuries and models growth in output
productivity and in emissions-reduction technology separately, whereas for
simplicity, I assume that productivity growth is constant and identical across
industries.

Like Aschenbrenner (and reminiscent of Jones (2016)), I find that as so-
ciety grows wealthier, it will be optimal to spend an ever greater fraction of
output on protection from existential risk. I also find that if existential risk
decreases with scale, no special concern for safety is required for the hazard
rate to fall to zero exponentially, and that if existential risk increases with
scale, the existential hazard rate should typically follow an inverted U-shape.
Whereas his results rely on exponential population growth, however, I find
in the exogenous growth framework that existential catastrophe given a fixed
population is not inevitable—even though productivity growth grows exoge-
nously across the risk-increasing consumption sector and the risk-decreasing
safety sector and is therefore not directed. I also find that a positive proba-
bility of avoiding existential catastrophe is achievable regardless of the scale
effect of existential risk, but is not optimal to achieve if marginal utility in
consumption diminishes sufficiently slowly.

The rest of this paper is organized as follows. Section 2 presents the
economic environment of the model and a benchmark “rule of thumb alloca-
tion”. Section 3 presents the asymptotic optimal growth path, highlighting
how the scale effect of existential risk matters for the long run. Section 4
concludes.

2 The Economic Environment

2.1 Setup

The economy features a consumption sector, producing consumption good
Ct, and a safety sector, producing safety good Ht. Total production in each
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sector is given by
Ct = AtLt and Ht = AtSt. (1)

Total factor productivity A grows at some exogenous, constant expo-
nential rate g. Note that, in this framework, raising At to some common
exponent “α” in the Ct and Ht production functions is equivalent to the
above where At grows at rate αg. Eliminating α is therefore without further
loss of generality.

The size of the global labor force is normalized to 1 and assumed to be
constant. Our resource constraint for labor is thus

Lt + St ≤ 1. (2)

An existential catastrophe results in permanent zero utility thereafter.
Formally, human civilization faces a time-varying hazard rate δt, represent-
ing a stochastic probability of existential catastrophe. The probability that
human civilization survives to date t (starting from date 0) is given by

Mt = e−
∫ t
0 δsds, (3)

corresponding to the laws of motion

Ṁt = −δtMt, M0 = 1. (4)

The hazard rate is endogenous, and as explained above increases with
consumption and decreases with safety spending:

δt = δCε
tH
−β
t . (5)

Expected lifetime utility for a representative agent is

U =

∫ ∞
0

e−ρtu(Ct)Mtdt, (6)

where flow utility is isoelastic in consumption:

u(Ct) = u+
C1−γ
t

1− γ
. (7)

The parameter u is a constant that specifies the upper bound of the utility
of life relative to death (with the utility of death implicitly normalized to 0)
in the case where γ > 1 and thus c1−γ/(1− γ) is negative.
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Flow utility is discounted at exponential rate ρ, representing the (positive)
sum of some nonnegative rate of pure time preference and some nonnegative
rate of natural and unavoidable existential risk.

M∞ = limt→∞Mt = e−
∫∞
0 δsds represents the probability that human

civilization does not succumb to an anthropogenic existential catastrophe
and, at least in expectation, enjoys a long and flourishing future.1 Note that
M∞ > 0 iff

∫∞
0
δsds is bounded.

The representative agent, or his social planner, faces a single allocative
decision: the fraction of workers Lt to allocate to consumption (vs. safety)
production at all times t.

2.2 Rule of Thumb Allocation

As a benchmark, we will consider a simple “rule of thumb” allocation, as
in Jones (2016) and Aschenbrenner (2020). This rule of thumb allocation is
analogous to Solow’s (1956) assumption of a fixed saving rate in his version of
the neoclassical growth model. In particular, we will consider an allocation in
which the fraction of labor working on consumption is fixed over time. Later,
we will consider the optimal allocation, in which the fraction of resources
dedicated to safety can evolve.

Throughout the results that follow, we will use the notation g∗x ≡
limt→∞ gxt, where gxt ≡ ẋt/xt, for each time-dependent variable x.

Proposition 1. Balanced growth under rule of thumb allocation
Consider a rule of thumb allocation in which Lt = L∗ ∈ (0, 1). There exists a
balanced growth path in which the growth rates of consumption output, safety
output, and the hazard rate are given respectively by

gCt = g∗C = gHt = g∗H = g, (8)

gδt = g∗δ = g(ε− β). (9)

with

δt = δ∗ = δ
( L∗

1− L∗
)ε
> 0 if ε = β. (10)

1In the face of natural existential risk, this will entail eventually succumbing to a
natural existential catastrophe instead. From very-long-run historical data on large-scale
natural catastrophes, however, Snyder-Beattie et al. (2019) estimate the annual natural
existential hazard rate to be no more than 1 in 14,000, and likely much lower.
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Proof. See Appendix A.1.

As we can see, δt → 0 if ε < β and δt →∞ if ε > β.
What is important to note about this rule of thumb allocation is what

happens to existential risk. If ε < β, i.e. if proportional increases to safety
spending reduce the hazard rate δ by more than proportional increases to
consumption increase it, δ falls to zero at an exponential rate. Therefore,∫∞

0
δsds is bounded, which implies that the long-run probability of human

civilization’s survival, M∞, is strictly greater than zero. In the knife-edge
case of ε = β, the hazard rate always equals a positive constant, implying
M∞ = 0. If ε > β, the hazard rate increases exponentially. This induces not
only M∞ = 0, but in fact δ → ∞; that is, the instantaneous probability of
an existential catastrophe approaches 1.

3 The Optimal Allocation

Now consider a representative agent that maximizes its utility. The represen-
tative agent discounts future utility with positive rate ρ, due to impatience
and/or to exogenous existential risk, as noted above.

The optimal allocation of resources is a time path for Lt, Mt, δt that max-
imizes the utility of the representative agent, solving the following problem:

max
{Lt}

U =

∫ ∞
0

Mtu(Ct)e
−ρtdt, (11)

subject to

Ct = AtLt, (12)

Ht = AtSt, (13)

Lt + St = 1, (14)

Ȧt = Atg, (15)

Ṁt = −δtMt, (16)

δt = δCε
tH
−β
t . (17)

To solve for the optimal allocation, I define the current value Hamiltonian:

H = Mtu(Ct)− vtδtMt, (18)
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where Lt is our single control variable and Mt is our single state variable.
The costate variable vt captures the shadow values of an extra “lifetime”.
Based on the maximum principle and the arguments of Romer (1986), the
first-order conditions characterize a solution. [TODO: Verify that this applies
here.]

It will be useful to define

ṽt ≡
vt

u′ (Ct)Ct
. (19)

This is the shadow value of life, converted to consumption units by u′(Ct),
as a ratio to the level of consumption.

After some manipulation (see Appendix A.2) the first order conditions
yield:

St
Lt

=
βδtṽt

1− εδtṽt
, (20)

ρ =
v̇t
vt

+
1

vt
(u(Ct)− vtδt). (21)

The term ṽt—and in particular the product δtṽt—thus determines the al-
location of workers to consumption vs. safety. From (21), vt can also be
represented as

vt =
u(Ct)

ρ+ δt − gvt
, (22)

and thus

ṽt =
ũt

ρ+ δt − gvt
, ũt =

u(Ct)

u′(Ct)Ct
. (23)

ũt is the opportunity cost of death u(Ct), converted into consumption units
by u′(Ct), divided by the level of consumption Ct. ũ thus represents the
relative value of life. The denominator of ṽt essentially converts this into
a discounted present value. Therefore, ṽt represents the discounted relative
value of life and determines the demand for safety.

Note that the allocation of labor to safety is proportional to βδtṽt
1−εδtṽt . The

numerator represents the marginal value of work on safety: the reduction in
the hazard rate (times the discounted relative value of life). The denomi-
nator represents the marginal value of consumption: the utility benefits of
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consumption, normalized to 1, minus the increase in the hazard rate (times
the discounted relative value of life). As in Aschenbrenner (2020) and unlike
in Jones (2016), δtṽt cannot rise forever, since if εδtṽt > 1 the marginal value
of consumption is negative.

3.1 The Optimal Allocation with ε ≤ β

First, consider the case in which safety goods are at least as potent in reducing
existential risk as consumption goods in increasing existential risk, i.e. ε ≤ β.
Then, existential risk weakly decreases with scale. The asymptotic growth
path depends on the curvature of our preferences.

Proposition 2. Optimal growth with ε ≤ β and γ > 1 + β − ε
Assume that ε ≤ β and that the marginal utility of consumption falls rapidly,
in the sense that γ > 1 + β − ε. Then the optimal allocation features an
asymptotic constant growth path such that as t → ∞, asymptotic growth is
given by:

g∗C = g
β

γ − 1 + ε
> 0, (24)

g∗L = −g
(

1− β

γ − 1 + ε

)
< 0, (25)

g∗H = g > 0, (26)

g∗S = 0, (27)

g∗δ = −g
(

1 +
β(γ − 1)

γ − 1 + ε

)
< 0. (28)

Proof. See Appendix A.3.

Note that δt → 0 exponentially, implying M∞ > 0. Finally, note that this
solution is valid for all ρ > 0.

Unlike in the rule of thumb allocation, the allocation of resources to safety
can adjust. In particular,

ũt =
u(Ct)

u′(Ct)Ct
= uCγ−1

t +
1

1− γ
. (29)

Thus, given γ > 1, the relative value of life ũt increases as consumption grows.
As people grow wealthier, the marginal utility of consumption declines, and
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it becomes relatively more valuable to spend on avoiding existential catas-
trophe. This happens regardless of discount rate ρ: no particular concern
for the future is necessary for this dynamic. The rising value of life means
that resources are shifted towards the safety sector. Consumption growth
is substantially less than what is feasible and substantially less than safety
growth.

Proposition 3. Optimal growth with ε ≤ β and γ ≤ 1 + β − ε
Assume that ε ≤ β and that the marginal utility of consumption falls slowly,
in the sense that γ ≤ 1 + β − ε. Then the optimal allocation features an
asymptotic constant growth path such that as t → ∞, asymptotic growth is
given by:

g∗C = g > 0, (30)

g∗L = 0; (31)

if γ > 1,

g∗H = g
γ + ε

1 + β
> 0, (32)

g∗S = −g1 + β − ε− γ
1 + β

≤ 0, (33)

g∗δ = −gβγ − ε
1 + β

< 0; (34)

if γ ≤ 1,

g∗H = g
1 + ε

1 + β
> 0, (35)

g∗S = g
ε− β
1 + β

≤ 0, (36)

g∗δ = −gβ(2 + β)− ε
1 + β

< 0. (37)

In the edge cases that ε < β and γ = 1 + β − ε, or ε = β and γ ≤ 1, we have
g∗H = g and g∗S = 0. St and Lt approach constants strictly between zero and
one. Otherwise, g∗S < 0 and so St → 0.

Proof. See Appendix A.4.
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Note again that δt → 0 exponentially in all cases, implying M∞ > 0.
In short, when γ is smaller than 1 + β − ε, the value of life does not

grow faster than the hazard rate δt declines. Thus, the critical product δtṽt
declines, and resources are shifted to consumption. Consumption growth is,
in the limit, as fast as is feasible. At the same time, the hazard rate falls to
0.

In this sense, the outcome of the optimal allocation is broadly similar to
that of the rule of thumb allocation when ε < β. It is possible to improve
upon the rule of thumb allocation by shifting the allocation over time, but
humanity has positive probability of survival in any case.

3.2 The Optimal Allocation with ε > β

Now consider the case where consumption goods are more potent in increas-
ing existential risk than safety goods are in reducing it, i.e. ε > β.

Proposition 4. Optimal growth with ε > β and γ > 1
Assume that ε > β and that the marginal utility of consumption falls rapidly,
in the sense that γ > 1. Then the optimal allocation features an asymptotic
constant growth path such that as t→∞, asymptotic growth is given by:

g∗C = g
β

γ − 1 + ε
> 0, (38)

g∗L = −g
(

1− β

γ − 1 + ε

)
< 0, (39)

g∗H = g > 0, (40)

g∗S = 0, (41)

g∗δ = −g
(

1 +
β(γ − 1)

γ − 1 + ε

)
< 0. (42)

Proof. See Appendix A.5.

Given γ > 1, the relative value of life ũt rises as consumption grows, as
when ε ≤ β. Now, however, we have ε − β > 0: existential risk grows with
scale. Despite this scale effect, workers and scientists are shifted to the safety
sector quickly enough that δt still declines exponentially on the asymptotic
growth path, yielding M∞ > 0. Unlike in the rule of thumb allocation,
there is a positive probability that humanity does succumb to an existential
catastrophe.
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Proposition 5. Optimal growth with ε > β and 1− ε < γ ≤ 1
Assume that ε > β and that the marginal utility of consumption falls slowly,
in the sense that γ ≤ 1. Finally, assume that the elasticity of the hazard
rate is larger than the elasticity of utility with respect to consumption, i.e.
ε > 1−γ.Then, the optimal allocation features an asymptotic constant growth
path such that as t→∞, asymptotic growth is given by:

g∗C =
β

ε
g > 0, (43)

g∗L =
β − ε
ε

g < 0, (44)

g∗H = g > 0, (45)

g∗S = 0, St → 1, (46)

g∗δ = 0, δt → δ∗ =
(1− γ)ρ− (1− γ)2g∗C

ε− 1 + γ
. (47)

Proof. See Appendix A.6.

Given γ ≤ 1, the relative value of life ũt is bounded, just as when ε < β.
Now, however, we have ε − β > 0: existential risk grows with scale. Unlike
when ε < β, labor is shifted to the safety sector even when γ ≤ 1, not just the
narrower class of preferences with γ significantly greater than one as in Jones
(2016). This is because even though the relative value of life ũt is bounded
when γ ≤ 1, δt continues to increase because of the scale effect of existential
risk. When ε > 1 − γ, δtṽt would get too large if labor wasn’t shifted to
safety. Nevertheless, despite labor being shifted to safety, it is not shifted
quickly enough to bound

∫∞
0
δsds, so the long-run probability of humanity’s

survival is M∞ = 0 when γ ≤ 1 and ε > β.
However, there is also another case when ε < 1 − γ. Here, the elasticity

of the hazard rate is smaller than the elasticity of utility with respect to
consumption, so resources need not be all shifted to safety to bound δtṽt,
and so the optimal allocation features balanced growth as in the rule of
thumb allocation and δt →∞.

Proposition 6. Optimal growth with ε > β and γ < 1− ε
Assume that ε > β and that the marginal utility of consumption falls slowly,
in the sense that γ < 1− ε. Then, the optimal allocation features an asymp-
totic constant growth path such that as t → ∞, asymptotic growth is given
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by:

g∗C = g > 0, (48)

g∗L = 0, Lt → L∗ =
1− γ − ε

β + 1− γ − ε
, (49)

g∗H = g > 0, (50)

g∗S = 0, St → S∗ =
1− γ − ε

β + 1− γ − ε
, (51)

g∗δ = (ε− β)g > 0. (52)

Proof. See Appendix A.7.

Critically, consider the comparison of the optimal allocation to the rule
of thumb allocation. In the rule of thumb allocation when ε > β, δt → ∞
and M∞ = 0 because of the scale effect of existential risk. By contrast, when
γ > 1 − ε, resources are shifted to the safety sector in optimal allocation,
counteracting the scale effect. Thus, δt converges to a small constant or even
zero. Given γ > 1, the optimal allocation features δt falling to zero exponen-
tially, and thus M∞ > 0. However, if γ ≤ 1, M∞ = 0. Nonetheless, if the
marginal utility of consumption falls sufficiently slowly, i.e. γ < 1 − ε, not
all labor is shifted to the safety sector asymptotically and the optimal allo-
cation looks like the rule of thumb allocation, with the hazard rate growing
exponentially.

The case of ε > β is thus a world in which existential risk is an enormous
challenge, but can still be overcome. With a static concern for safety, as in
the rule of thumb allocation, the scale effect portends disaster. By shifting
resources to safety, as in the optimal allocation for sufficiently curved pref-
erences, this scale effect can be contained; in fact, when γ > 1, even the
impatient optimal allocation features a nonzero probability of humanity’s
survival in the long run.

3.3 Summary

To provide an overview of the various optimal allocations, here is an overview
of the asymptotic growth paths under different parameter values. For the
sake of clarity, I have omitted the knife-edge cases.
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Table 1: Overview of Optimal Allocations

ε < β ε > β

Rule of thumb
allocation

Lt = L∗ ∈ (0, 1)
gC = gH = g
δt → 0
M∞ > 0

Lt = L∗ ∈ (0, 1)
gC = gH = g
δt →∞
M∞ = 0

Optimal
allocation with

smallest γ
Lt → 1
gC → g
δt → 0
M∞ > 0

Lt → L∗ ∈ (0, 1)
gC → g
δt →∞
M∞ = 0

Optimal
allocation with

smaller γ

Lt → 0
gC → g∗C ∈ (0, g)
δt → δ∗ > 0
M∞ = 0

Optimal
allocation with

large γ

Lt → 0
gC → g∗C ∈ (0, g)
δt → 0
M∞ > 0

Lt → 0
gC → g∗C ∈ (0, g)
δt → 0
M∞ > 0

Existential risk
in rule of thumb

vs. optimal
allocation

δ exponentially decays
under rule of thumb.
Optimal allocation
changes pace of decay.

δ explodes under rule
of thumb. Optimal
allocation can contain
growth in δ.

4 Conclusion

Aschenbrenner (2020) explores the possible relationship between economic
growth and existential risk, using an endogenous growth model in which
sustained output growth requires sustained population growth, and an ex-
istental risk model in which the production of consumption goods increases
existential risk and the production of “safety goods” lowers it. He finds that,
as society grows richer, it should allocate ever more of its resources from
consumption to existential risk mitigation efforts. Furthermore, he finds
that this policy can render (at least anthropogenic) existential catastrophe
permanently avoidable under circumstances in which it would be inevitable
under a “rule of thumb” policy in which a fixed proportion of output is spent
on risk reduction. Finally, he finds that if there is a sufficiently large “scale
effect” of existential risk, existential catastrophe is unavoidable: lowering
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the hazard rate steeply enough to render the probability of long-run survival
positive would require a consumption sacrifice so large that life would no
longer be worth living, and which would therefore in itself constitute a kind
of existential catastrophe.

Here, we have seen that the last of these findings, but not the rest, dis-
appears when we use the same risk model but move to a simple exogenous
growth model. The intuition for this divergence is straightforward. Fixing
consmption at some positive-utility level, exponential exogenous productiv-
ity growth allows for an exponential increase in risk-mitigation efforts, which
delivers a positive probability of survival. Exponential population growth
with fixed consumption per capita, on the other hand, creates exponential
increases in output only at the expense of corresponding exponential increases
in the risky production of consumption goods.

Since we are unlikely to sustain population growth in coming centuries,
but may nonetheless sustain productivity growth, the above is good news
for those concerned with humanity’s long-term survival. It also illustrates
the potential importance of growth theory from a longtermist perspective,
even if we believe with Bostrom (2003) that existential risk is the primary
determinant of the expected value of the future. Our beliefs about the feasi-
bility of containing existential risk may be sensitive to our beliefs about the
mechanisms driving economic growth.
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Appendix

A.1 Proof of Proposition 1

By assumption, Ct = AtLt and Ht = AtSt. Since Lt and St are constant
in this rule of thumb allocation, Ct and Ht grow at the growth rate of A,
denoted g. That is, gCt = gHt = g ∀t. So

gCt = gH,t = g∗C = g∗H = g ∀t. (53)

Since δt = δCε
tH
−β
t , we have gδt = εgCt − βgHt. From the above, gδt =

εg − βg ∀t. So

gδt = g∗δ = g(ε− β) ∀t. (54)

Finally, if ε = β, δt = δ(C0e
g∗Ct)ε(H0e

g∗H t)−ε = δ(C0/H0)ε ∀t. Since C0 =
A0L

∗ and H0 = A0(1− L∗), we have C0/H0 = L∗/(1− L∗), and thus

δt = δ∗ = δ
( L∗

1− L∗
)ε
> 0 ∀t. (55)
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A.2 First Order Conditions of the Hamiltonian

FOC: Lt

∂H
∂Lt

= 0

=⇒ ∂

∂Lt
[Mtu(Ct)− vtδtMt] = 0

=⇒ Mt
∂

∂Lt

[(AtLt)
1−γ

1− γ
+ u− vtδAε−βt LεtS

−β
t

]
= 0

=⇒ vtδA
ε−β
t (εLε−1

t (1− Lt)−β + Lεtβ(1− Lt)−β−1) = A1−γ
t L−γt (56)

Define

ṽt ≡
vt

u′(Ct)Ct
. (57)

From ṽt = vtC
γ−1
t = vt(AtLt)

γ−1, we have A1−γ
t L−γt = vt/Ltṽt. It follows

that

δAε−βt Lεt(1− Lt)−β ·
ε

Lt
+ δAε−βt Lεt(1− Lt)−β ·

β

1− Lt
=

1

Ltṽt
(58)

=⇒ δt

( ε
Lt

+
β

1− Lt

)
=

1

Ltṽt
(59)

=⇒ δtε+ δtβ
Lt

1− Lt
=

1

ṽt
(60)

=⇒ St
Lt

=
βδtṽt

1− εδtṽt
. (61)

In other words, the ratio of worker-types is proportional to the ratio of the
value of what these worker-types can produce. In the numerator is the hazard
rate times the relative value of life times β (the effectiveness of safety goods
in reducing existential risk), which is the marginal value of safety output. In
the denominator is 1 (which is value of consumption relative to ṽt) minus
the risk-increasing effects of consumption, which is the marginal net value of
consumption output.
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FOC: Mt

∂H/∂Mt + v̇t
vt

= ρ (62)

=⇒ v̇t
vt

+
1

vt
(u(Ct)− vtδt) = ρ (63)

Transversality Condition

Note that the standard transversality condition applies:

lim
t→∞

[e−ρt · vtMt] = 0 (64)

The path of δtṽt

Note that we must have 0 < Lt ≤ 1, where the strict inequality comes from
the fact that at least some labor must be allocated to consumption along the
balanced growth path. Thus St/Lt must be finite; its denominator cannot be
0. Given that ε, β, δt, and ṽt are guaranteed to be positive along the optimal
path, we have

δtṽt <
1

ε
. (65)

This foreshadows what will happen along the balanced growth path.
Given the preference parameter, either δt falls to 0 faster than ṽt, in which
case δtṽt falls to 0, or δtṽt asymptotically approaches 1/ε.

Characterizing ṽt

From FOC: Mt, we obtain

v̇t
vt

+
1

vt
(u(Ct)− vtδt) = ρ

=⇒ ρ− v̇t
vt

+ δt =
u(Ct)

vt

=⇒ vt =
u(Ct)

ρ+ δt − gvt
(66)

=⇒ ṽt =
u(Ct)/u

′(Ct)Ct
ρ+ δt − gvt

. (67)
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Thus, the relative value of life depends on the extra utility a person enjoys
versus increasing consumption on the current margin. This is why the degree
of diminishing returns, γ, in our utility function plays such a key role.

Finally, given isoelastic utility,

u(Ct)

u′(Ct)Ct
=
u+

C1−γ
t

1−γ

C−γt Ct

=⇒ u(Ct)

u′(Ct)Ct
= (u+

C1−γ
t

1− γ
)(C

−(1−γ)
t )

=⇒ u(Ct)

u′(Ct)Ct
= uCγ−1

t +
1

1− γ
. (68)
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A.3 Proof of Proposition 2

It follows from ε ≤ β and γ > 1 + β − ε that γ > 1. Observe that when
γ > 1, given equations (68) and (67), along a balanced growth path in which
Ct →∞:

gṽ = g u(Ct)

u′(Ct)Ct
− gρ+δt−gvt

= guCγ−1
t + 1

1−γ

= (γ − 1)gC (69)

as long as δt converges to some constant.
Now let us conjecture that when ε ≥ β and γ > 1 + β − ε, there is an

asymptotic balanced growth path in which Ct and Ht rise, and Lt falls to
zero, at constant exponential rates.

Since Ct = AtLt and Ht = AtSt, in our proposed solution consumption
growth and safety growth are given by

gC = g + gL,

gH = g + gS. (70)

Substituting the gC term into (95):

gṽ = (γ − 1)(g + gL). (71)

Now recall from (61) that (1 − Lt)/Lt = (βδtṽt)/(1 − εδtṽt). Given a
constant, positive ε and β, the only way for Lt to fall to 0 is for δtṽt to
grow. From (65), however, δtṽt < 1/ε. Thus, as t → ∞, δtṽt → 1/ε, i.e.
δtṽt is asymptotically constant. This in turn means that εδtṽt converges to 1
asymptotically, meaning that 1− εδtṽt will fall to 0 exponentially. This then
delivers the desired exponential increase in (1− Lt)/Lt and the exponential
fall to 0 of Lt.

We now have:

lim
t→∞

˙ln(δtṽt) = 0

=⇒ gδ = −gṽ. (72)

From (71):

gδ = −(γ − 1)(g + gL) (73)
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From δt = δAε−βt Lεt(1− Lt)−β, we can produce another expression for gδ:

gδ = lim
t→∞

˙ln(δAε−βt Lεt(1− Lt)−β)

= lim
t→∞

[
(ε− β) ˙ln(At) + ε ˙ln(Lt)− β ˙ln(1− Lt)

]
= (ε− β)g + εgL (74)

where ˙ln(1− Lt) = gS = 0, because 1− Lt is asymptotically constant at 1.
Setting (74) equal to (73):

(ε− β)g + εgL = −(γ − 1)(g + gL)

=⇒ ((ε− β) + (γ − 1))g = (1− γ − ε)gL

=⇒ gL = g
ε− β + γ − 1

1− γ − ε

= −g
(

1− β

γ − 1 + ε

)
. (75)

Given γ > 1, we have gL < 0 iff

ε− β + γ − 1 > 0

⇐⇒ γ > 1 + β − ε, (76)

as conjectured.
We can now calculate the other asymptotic growth rates as well. From

(70) and (75),

gC = g
β

γ − 1 + ε
, (77)

gH = g. (78)

gC > 0 follows from γ > 1.
Finally, from (74) and (75),

gδ = g(ε− β)− εg(1− β

γ − 1 + ε
)

= −g
(

1 +
β(γ − 1)

γ − 1 + ε

)
. (79)

gδ < 0, and thus δt → 0, follow from γ > 1.
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How Low Can ρ Go?

What values of ρ are permissible for our asymptotic growth path to be valid?
In particular, the denominator of our shadow price must be positive and

the optimal allocation must satisfy the transversality condition.
First, consider the shadow price, vt. Recall that

vt =
u(Ct)

ρ+ δ − gvt
(80)

Along a balanced growth path, gvt → gv, and we require that the denominator
is positive. If δ → ∞, the denominator is clearly positive on a balanced
growth path. If δ → δ∗ ≥ 0, the denominator will be asymptotically constant
and:

gvt = gu − gρ+δ−gvt = gu = (1− γ)gC , γ < 1; (81)

= 0, γ ≥ 1.

Therefore, for the denominator of vt to be positive, we require that ρ+δ >
(1− γ)g∗C . This means that if δ → 0 and γ ≥ 1 any ρ > 0 is valid. If δ → 0
and γ < 1, ρ > (1− γ)g∗C is valid. If δ → δ∗ > 0, ρ > (1− γ)g∗C − δ is valid
(with the condition that ρ > 0 still).

Now consider the transversality condition:

lim
t→∞

[e−ρt · vtMt] = 0 (82)

Note that whatever the behaviour of δt, g
∗
M = 0. Considering the growth

rate of the expression inside the limit, we require that:

−ρ+ gv + g∗M < 0⇒ ρ > gv (83)

If δ → δ∗ ≥ 0, this condition is just that ρ > (1 − γ)g∗C as before. If
δ →∞ (as in Proposition 6), gv = gṽ + (1− γ)g∗C = (1− γ − ε+ β)g. Then,
for the transversality condition to be satisfied, ρ > (1 − γ − ε + β)g. Note
that this is stricter than the requirement that ρ > 0, as 1 − γ − ε > 0 in
Proposition 6 and β > 0.
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A.4 Proof of Proposition 3

Let us conjecture that when ε ≤ β and γ > 1 + β− ε, there is an asymptotic
balanced growth path such that Ct and Ht rise, and St falls to zero, at
constant exponential rates.

As in (70), in our proposed solution consumption growth and safety
growth are given by

gC = g + gL,

gH = g + gS. (84)

Here, however, Lt → 1, so we have gL = 0 (rather than gS = 0).
From δt = δAε−βt Lεt(1− Lt)−β, we have:

gδ = lim
t→∞

˙ln(δAε−βt Lεt(1− Lt)−β)

= lim
t→∞

[
(ε− β) ˙ln(At) + ε ˙ln(Lt)− β ˙ln(1− Lt)

]
= (ε− β)g − βgS (85)

where ˙ln(Lt) = gL = 0, as noted above.
Recall from (61) that

St
Lt

=
ṽtδtβ

1− ṽtδtε
.

Since the denominators of this expression are asymptotically constant, and
since β is of course a constant, S and ṽδ must in the limit shrink at the same
rate. That is,

lim
t→∞

gSt = gṽtδt

=⇒ gS = gṽ + gδ (86)

on the asymptotic growth path.
The constraints that ε ≤ β and γ ≤ 1 + β − ε allow for γ > 1 or γ ≤ 1.

When γ > 1, from we know from (95) that gṽt → (γ − 1)gC along a
balanced growth path in which Ct → ∞, as long as δt converges to some
constant.

From (86), (84), and (85) we therefore have

gS = (γ − 1)g + (ε− β)g − βgS

=⇒ gS = −g1 + β − ε− γ
1 + β

, (87)
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which as we can see is negative if γ < 1 + β − ε and zero if γ = 1 + β − ε.
From (84) and (87), we have

gH = g − g1 + β − ε− γ
1 + β

= g
γ + ε

1 + β
. (88)

Note that, if γ = 1 + β − ε (the case where gS = 0 given γ > 1), we have
gH = g, not gH = 0. It follows that in this case St → S∗ > 0, and likewise
Lt → L∗ < 1.

Finally, from (85) and (87), we have

gδ = (ε− β)g + βg
1 + β − ε− γ

1 + β

= −gβγ − ε
1 + β

, (89)

which is negative given ε ≤ β, because γ > 1 in this case. So δt → 0.

When γ ≤ 1,

gṽ = g u(Ct)

u′(Ct)Ct
− gρ+δt−gvt

= guCγ−1
t + 1

1−γ

= 0, (90)

as long as δt converges to some constant.
From (86), (84), and (85) we therefore have

gS = (ε− β)g − βgS

=⇒ gS = −g β − ε
1 + β

, (91)

which as we can see is negative if ε < β and zero if ε = β.
From (84) and (91), we have

gH = g − g ε− β
1 + β

= g
1 + ε

1 + β
. (92)
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Note that, if ε = β (the case where gS = 0 given γ ≤ 1), we again have
gH = g, not gH = 0. It follows that in this case St → S∗ > 0, and likewise
Lt → L∗ < 1.

Finally, from (85), and (91), we have

gδ = (ε− β)g + βg
β − ε
1 + β

= −gβ(2 + β)− ε
1 + β

, (93)

which is negative given ε ≤ β.
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A.5 Proof of Proposition 4

Note that the formulas for g∗C , g
∗
L, g

∗
H , g

∗
S, and g∗δ , and the corresponding in-

equalities, are identical in this case as under Proposition 2. The proof is iden-
tical as well (including the section on the minimum valid value of ρ). This
is because the key results that g∗L < 0 and g∗C > 0 follow from γ > 1 + β − ε,
which holds whenever ε > β and γ > 1.
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A.6 Proof of Proposition 5

Let us conjecture that when ε > β and 1− ε < γ ≤ 1 , there is an asymptotic
balanced growth path such that Lt → 0, g∗C > 0, and δ converges to a
constant.

Observe that when γ < 1, given equations (68) and (67), along a balanced
growth path in which Ct →∞:

gṽ = g u(Ct)

u′(Ct)Ct
− gρ+δt−gvt (94)

= guCγ−1
t + 1

1−γ

= 0

as long as δt converges to some constant. In the knife-edge case where γ = 1,
u(Ct)

u′(Ct)Ct
= ū+ln(Ct). From this it follows that g u(Ct)

u′(Ct)Ct
= gc

ū+ln(Ct)
. Asymptot-

ically, gC is constant, while Ct → ∞. Therefore, along the balanced growth
path, g u(Ct)

u′(Ct)Ct
= 0 even when γ = 1.

Recall from (61) that

St
Lt

=
ṽtδtβ

1− ṽtδtε
. (95)

Since Lt → 0 and St → 1 on the conjectured balanced growth path, the
denominator of the right hand side must also tend to zero on the conjectured
balanced growth path. Therefore, δtṽt → 1/ε. This implies that g∗δ = −gṽ ⇒
g∗δ = 0.

To find the asymptotic growth rate of Lt, consider

gδt = (ε− β)g + εgLt − βgSt (96)

which follows directly from the construction of δt. Along the conjectured
balanced growth path, g∗δ = g∗S = 0. Therefore g∗L = g(β − ε)/ε, which is less
than zero, as conjectured.

Finally, to find the asymptotic value of δt, consider that as t → ∞,
δt → 1/(εṽt). So

δ∗ = lim
t→∞

1

ε

ρ+ δt − gv
ũt

=
1

ε

ρ+ δ∗ − (1− γ)g∗C
1

1−γ

=⇒ δ∗ =
(1− γ)ρ− (1− γ)2g∗C

ε− 1 + γ
. (97)
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As 1−ε < γ, the denominator is positive. The numerator is positive iff ρ >
(1−γ)g∗c . This ensures that our integral over utility is bounded: u(Ct) grows
at rate (1− γ)g∗C asymptotically, so if ρ were smaller than that, the integral
would be unbounded, and the expected-utility-maximization problem would
be undefined. Thus, δ does indeed converge to a constant as conjectured.

Note that when γ = 1, δ∗ = 0. Nevertheless, g∗δ = 0 as before. Since δ
still does not fall exponentially, M∞ = 0.
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A.7 Proof of Proposition 6

Let us conjecture that when ε > β and γ < 1 − ε , there is an asymptotic
balanced growth path such that Lt and St converge to positive constants,
g∗C > 0, and δt grows exponentially.

Lt → L∗ > 0 and St → S∗ > 0

⇒ g∗L = g∗S = 0,

g∗C = g∗H = g,

g∗δ = (ε− β)g.

These expressions follow directly from the construction of Ct, Ht, and δt. All
that remains is to check δtṽt < 1/ε and to find L∗ and S∗.

First, check δtṽt < 1/ε. Given g∗C > 0 and γ < 1− ε, we have u(Ct)
u′(Ct)Ct

→
1/(1− γ). Recall that

δtṽt =
δt

ρ+ δt − gvt
· u(Ct)

u′(Ct)Ct
. (98)

On an asymptotic growth path, gvt is constant. ρ is also constant. Therefore,
δt/(ρ+ δt − gvt)→ 1 as t→∞. Therefore,

δtṽt →
1

1− γ
. (99)

Note that γ < 1− ε⇒ 1/ε > 1/(1− γ). So δtṽt < 1/ε as required.
Recall from (61) that

St
Lt

=
1− Lt
Lt

=
βṽtδt

1− εṽtδt

⇒ 1− L∗

L∗
=

β 1
1−γ

1− ε
1−γ

⇒ L∗ =
1− γ − ε

β + 1− γ − ε
⇒ S∗ =

β

β + 1− γ − ε
.

Given γ < 1− ε, 1− γ − ε > 0 so L∗ and S∗ are both positive and less than
one as required.
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A.8 Laws of motion for Lt and δt

Note that for any variable a, ̂(1− a) =
˙1−a

1−a = − ȧ
a

a
1−a = −â a

1−a . From this
and the construction of At, Ct, and δt it follows that

gAt = g,

gCt = g + gLt,

gδt = (ε− β)g + (ε+ β
Lt

1− Lt
)gLt.

From the construction of u(Ct) we have that

gu′(Ct)Ct = (1− γ)gCt.

Taking logs and derivatives of (61) we have that

−gLt
1− Lt

= (gδt + gvt + (γ − 1)gCt)(1 +
1− Lt
Lt

ε

β
).

After some manipulation and substituting in the expression for gvt from (63),
this yields

gLt = =
(ε− β)g + ρ− u(Ct)

vt
+ δt

−1− ε− β − (γ − 1)1−Lt
Lt

.

To find an expression for u(Ct)/vt, consider again (61), and see that:

u(Ct)

vt
(1− εδtvtCγ−1

t ) =
Lt

1− Lt
βδtC

γ−1
t

⇒ u(Ct)

vt
=

Lt
1− Lt

βδtC
γ−1
t u(Ct) + εδtC

γ−1
t u(Ct).

As Ct = AtLt, and u(Ct) = ū +
C1−γ
t

1−γ we have expressions for gLt, and gδt in
terms of Lt, δt and At.
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