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1 Introduction

Technology increases consumption. It may also pose existential risk, or “x-risk”: the
risk of human extinction or, equivalently for decision purposes, an equally complete
and permanent welfare loss.1 Advanced biotechnology (Millett and Snyder-Beattie,
2017), nuclear weapons (Geist et al., 2024),2 and emissions-intensive industrial pro-
duction (Steffen et al., 2018) have been argued to pose such risks, and x-risk from AI
is now also a widespread concern (Center for AI Safety, 2023; Jones, 2024, 2025).

This suggests a tradeoff between x-risk and consumption growth. Bostrom (2003)
argues that if we do not discount the welfare of future generations, x-risk looms espe-
cially large: the benefits of saving the world could last almost indefinitely, whereas
speeding technological development only yields significant benefits in the “short
term”, by pulling forward the time when the pool of useful technologies is exhausted.
Ord (2024) offers a helpful exposition of this and related points. Baranzini and Bour-
guinion (1995) consider the “growth vs. risk” tradeoff within a more conventional eco-
nomic framework, focusing on the conditions under which the optimal policy is also
safest. Nordhaus (2011), Méjean et al. (2020), and Jones (2016, 2024, 2025) more gener-
ally study the amount of consumption worth sacrificing for existential safety.3

To our knowledge, every economic model to date of the impact of growth4 on x-
risk assumes that stagnation is perfectly safe. This condition is extreme and arguably
unrealistic. Even if we developed no new technology, our ability to develop and de-
ploy nuclear and biological weapons, and/or the possibility of triggering a runaway

1See e.g. Bostrom (2002), Posner (2004), Farquhar et al. (2017), and Ord (2020). We will refer to the
event that humanity immediately goes extinct or suffers a similarly complete and permanent welfare
loss as an “existential catastrophe”, or simply “catastrophe”. Our definition excludes gradual events such
as slow AI takeover (Christiano, 2019; Kulveit et al., 2025). We will refer to “humanity” and “[human]
civilization” interchangeably and ignore impacts on non-humans.

2Geist et al. testify to the long-standing worry of existential catastrophe from nuclear winter, but
find that current stockpiles would probably not directly induce one. It remains possible that a nuclear
war will induce one by other means (e.g. by greatly increasing these stockpiles).

3Less relevantly, a large literature studies the willingness to pay to reduce catastrophic risk where
the catastrophe is (or can be modeled as) a negative consumption shock. See especially Barro (2006,
2009), Martin and Pindyck (2015, 2021), Aurland-Bredesen (2019), Weitzman (2009), and Acemoglu and
Lensman (2024). Note that following a negative consumption shock, themarginal utility of consumption
rises, whereas following an existential catastrophe, it falls to zero. Note also that the latter can happen
at most once.

4Throughout, we will use the term “growth” as shorthand for “technological development”. We will
not discuss other sources of consumption growth.
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climate feedback loop, would seem to render the “hazard rate” (probability of exis-
tential catastrophe per unit time) positive; and even if it is not, this may change. We
present a model in which stagnation is not necessarily safe, and argue from it that the
risk-minimizing growth rate is typically positive and often high.

We assume throughout that technology is the only source of x-risk: i.e. that in
the absence of an anthropogenic x-risk, we will enjoy a long and flourishing future.5

Accounting for the possibility of natural x-risks which technology can mitigate would
strengthen the headline result.

Two clarifications. First: we make no normative claims, only positive claims about
the impact of one variable (the speed of technological development) on the probabil-
ity of one event (existential catastrophe). Appendix A offers an argument that those
with low discount rates should primarily care about minimizing this probability. But
for modeling purposes, the key feature of existential catastrophe is not its normative
significance but the fact that it can occur at most once.

Second: we follow Jones (2016, 2024) and many others in modeling technology as
“one-dimensional”. We do this because we are analyzing the impact of speeding or
slowing technological development, not directing it. It may be that some technologies
raise x-risk, such as biological weaponry; others lower it, such as vaccination; and
the best way to decrease x-risk is to delay the former and speed the latter (Bostrom,
2002). Granting this, we still face the question of whether, on a given path through the
space of technology states, it is riskier to move more quickly. Existing work assumes
it always is; we argue it is often not. This is important because some interventions
may primarily change the rate of growth but not its direction, e.g. by affecting R&D
subsidies or the rate of population growth. Furthermore, many technologists predict
that AI will itself soon accelerate technological development across the board (Grace
et al., 2024). If so, efforts to lower x-risk by slowing the development of dangerous AI
capabilities6 may do the opposite on balance unless sufficiently targeted.

Outline. Section 2 considers what follows if the hazard rate is a function only of

5In practice, this will presumably entail succumbing to a natural existential catastrophe instead (see
Appendix A). From very-long-run historical data on large-scale natural catastrophes, and the typical
survival rate of other mammal species, Snyder-Beattie et al. (2019) estimate that the hazard rate from
natural x-risk is below one in 870,000 per year.

6See e.g. the Future of Life Institute’s 2023 call for an AI pause (Future of Life Institute, 2023).
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the technology state, or of both the technology state and a stock that accrues over
time (e.g. greenhouse gas emissions). Here, stagnation is safe only when the current
state is perfectly safe. Otherwise, if future technology states will be safe (perfectly
or asymptotically), it is safest to grow as quickly as possible; and if not, catastrophe
is inevitable whatever the growth rate. Given a positive hazard rate, therefore, faster
growth is always weakly safer—regardless of whether technologies on the immediate
horizon would raise the hazard rate or lower it.

We then consider two mechanisms through which faster growth can increase risk
despite the above.

In Section 3, we suppose that the hazard rate depends not only on the technology
state but also directly on the growth rate. That is, the risk of catastrophe in a given
year depends not only on the technologies that exist that year—say, the ongoing risk
that nuclear weaponry, biotechnology, etc. are used with catastrophic consequences—
but also on the number of experiments performed that year to develop new technolo-
gies. Consider Jones’s (2016) analogy between technological development and Russian
roulette. We call the first source of risk “state risk” and the second “transition risk”.

Accelerating growth has no effect on transition risk if the risk posed by a given ex-
periment is independent of how many experiments happen concurrently, as assumed
e.g. by Jones (2016, 2024). Suppose that the future contains a sequence of experiments,
each of which will pose some x-risk. Permanent stagnation can lower transition risk
by avoiding advanced experiments altogether, but an acceleration that only pulls for-
ward their date leaves cumulative risk unchanged. If the hazard rate is strictly convex
in the rate of experimentation, however, then faster growth increases transition risk.
The tradeoff between lowering state risk and raising transition risk can render the
risk-minimizing growth rate finite, but as long as there is any state risk at all, it re-
mains positive.

In Section 4, we suppose that the hazard rate depends not only on the technol-
ogy state but also on a policy decision to sacrifice consumption for safety. If policy
responds “optimally” to the technology path—in the sense of maximizing expected dis-
counted utility, for an arbitrary discount rate—then the conclusion that faster growth is
safer is actually strengthened. This is for two reasons. First, when technology is more
advanced, society is richer, so optimal policy is more stringent. The logic is closely
analogous to that of Jones (2016, 2024) and to the “environmental Kuznets curve” of
Stokey (1998): when consumption is high, the value of life is high and the value of
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marginal consumption is low.7 Thus faster growth now may lower x-risk by speeding
the arrival not only of safer technology, as in Section 2, but also of safer policy. Second,
the value of life is higher, and so optimal policy is more stringent, when subsequent
growth is expected to be faster, even before consumption has yet risen.

Given policy frictions, the risk-minimizing growth rate may again be finite. If pol-
icy cannot mitigate risks as effectively when the technological landscape is changing
more rapidly, then speed is risky, as in the case of “pure” transition risk. This effect,
if it is strong enough, can on some margins outweigh the contributions of growth to
safety outlined above. Still, unless we have reached perfect safety, the risk-minimizing
growth rate remains positive.

Section 5 summarizes these results and their limitations.

2 State risk

2.1 State risk only

The hazard rate. The “hazard rate” 𝛿𝑡 is the flow probability at 𝑡 of (technological)
existential catastrophe. In this section we posit that it is an arbitrary non-negative,
continuous function of a state variable 𝐴𝑡 :

𝛿𝑡 = 𝛿(𝐴𝑡), 𝛿(⋅) ≥ 0.

We will refer to the state variable as “technology”, in acknowledgment of the
view that technological developments, broadly construed, are the primary drivers of
changes in the hazard rate. In this model, therefore, we proceed through a sequence
of technology states. A given state may have both risk-inducing features, such as a
widespread ability to engineer pathogens, and risk-mitigating features, such as the
ability to easily detect novel diseases, develop vaccines, or implement quarantines.
If the “technologies” developed over the period after a state 𝐴𝑡 on balance raise the
hazard rate, 𝛿(𝐴𝑡+1) > 𝛿(𝐴𝑡). If on balance they lower it, 𝛿(𝐴𝑡+1) < 𝛿(𝐴𝑡).

7Like these sources, we find that, given a concave enough utility function, enrichment motivates
large reallocations from consumption to safety. Our analysis differs in that none of these sources study
the conditions under which the probability of a binary event (here, existential catastrophe) is less than
1, nor the risk-minimizing path of a hazard rate over time more generally.



5

Survival. The probability that we survive to date 𝑡 is given by

𝑆𝑡 ≡ 𝑒
− ∫

𝑡

0
𝛿𝜏𝑑𝜏

⟺ �̇�𝑡 = −𝛿𝑡𝑆𝑡 , 𝑆0 = 1. (1)

The probability that we avoid a catastrophe and enjoy a very long future is

𝑆∞ ≡ lim
𝑡→∞

𝑆𝑡 = 𝑒
−𝑋

, (2)

where 𝑋 ≡
∫

∞

0

𝛿𝜏𝑑𝜏.

We will refer to {𝛿𝑡}
∞

𝑡=0
as the hazard curve, to the area under the hazard curve 𝑋 as

cumulative risk, to {𝑆𝑡}∞𝑡=0 as the survival curve, and to 𝑆∞ as the probability of survival.
Note that the probability of survival decreases in cumulative risk, and survival is

possible (𝑆∞ > 0) iff cumulative risk is finite. Survival is possible only if the world is
on track to eventually be safe, exactly or asymptotically.

2.2 Acceleration

Technology paths. Let 𝑎 ≡ {𝑎𝑡}
∞

𝑡=0
denote a particular technology path, so that on

this path, 𝐴𝑡 = 𝑎𝑡 . Unless otherwise stated, we assume that a technology path has a
continuous and positive derivative.8 We denote 𝑎∞ ≡ lim𝑡→∞ 𝑎𝑡 .

On path 𝑎, technology crosses every value from 𝑎0 to 𝑎∞ exactly once. So the area
under the hazard curve can be found by integrating with respect to technology:

𝑋(𝑎) ≡
∫

∞

0

𝛿(𝑎𝑡)𝑑𝑡 = ∫

𝑎∞

𝑎0

𝛿(𝐴)

𝑑𝑡

𝑑𝐴

𝑑𝐴 =
∫

𝑎∞

𝑎0

𝛿(𝐴)�̇�
−1

𝐴
𝑑𝐴, (3)

where, somewhat abusing notation, �̇�𝐴 ≡ �̇�
𝑡
−1
(𝐴)

denotes technology growth per unit
time when the technology state is the subscripted 𝐴. To interpret the central integral,
the risk endured in state 𝐴 is the product of risk per unit time in 𝐴, 𝛿(𝐴), and “length
of time” spent in 𝐴, 𝑑𝑡/𝑑𝐴.

8Because technology has not yet been given any substantive interpretation, this essentially just
amounts to an indexing of technology states.



6

Accelerations. Given a technology path 𝑎, choose 𝐴, 𝐴 with

𝑎0 ≤ 𝐴 < 𝐴 < 𝑎∞. (4)

Call technology path �̂� an acceleration to 𝑎 from 𝐴 to 𝐴 if �̂�0 = 𝑎0,

̇
�̂�𝐴

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

= �̇�𝐴, 𝐴 ∈ (𝑎0, 𝐴);

> �̇�𝐴, 𝐴 ∈ (𝐴,𝐴);

= �̇�𝐴, 𝐴 ∈ (𝐴, 𝑎∞),

(5)

and �̂� is 1 on (𝐴,𝐴) and continuous. Because the exponent on �̇�𝐴 in the rightmost
integral of (3) is negative, the accelerationweakly lowers risk endured across the range
of technology levels:

𝑋(�̂�) = 𝑋(𝑎) + Δ𝑋(�̂�, 𝑎),

where Δ𝑋(�̂�, 𝑎) ≡
∫

𝐴

𝐴

𝛿(𝐴)(
̇
�̂�
−1

𝐴
− �̇�

−1

𝐴 )𝑑𝐴 ≤ 0 (6)

(with the inequality strict unless 𝛿(𝐴) = 0 for 𝐴 ∈ [𝐴,𝐴]).
This leaves two possibilities. If𝑋(𝑎) is finite, the acceleration decreases cumulative

risk by (6) and weakly increases the probability of survival. If 𝑋(𝑎) is infinite, the
probability of survival is zero with or without the acceleration.9

Since an acceleration from𝐴 temporarily increases the hazard rate if 𝛿(⋅) is increas-
ing around 𝐴 (as in Fig. 1a or b), it may appear to contemporaries that the acceleration
decreases the probability of survival. Here, however, that is impossible.

Likewise, call �̂� a deceleration from 𝐴 to 𝐴 if it satisfies (5) with the central inequal-
ity flipped (and is continuous, 1 on (𝐴,𝐴), and increasing). It follows immediately
that decelerations weakly increase cumulative risk.

Risk impact. It will be helpful to formalize the result above so that it can easily
compared with the results of Sections 3 and 4.

Given path 𝑎, for 𝐴, 𝐴 satisfying (4), let �̂�[𝐴,𝐴, ̇�̂�] denote the continuous path with
�̂�0 = 𝑎0, ̇�̂�𝐴 =

̇
�̂� for 𝐴 ∈ (𝐴,𝐴), and ̇

�̂�𝐴 = �̇�𝐴 otherwise. Then define the risk impact of

9Note that ∫ 𝐴

𝐴
𝛿(𝐴)𝑑𝐴 is finite by the continuity of 𝛿 in 𝐴 and of 𝐴 in 𝑡.
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𝑡
−1
(𝐴) 𝑡

−1
(𝐴)

𝛿(𝐴)

𝛿(𝐴) ←

𝑋

𝑡

𝛿𝑡

Figure 1a: 𝑋 < ∞;
acceleration lowers 𝑋

𝑡
−1
(𝐴) 𝑡

−1
(𝐴)

𝛿(𝐴)

𝛿(𝐴) ←

𝑋

𝑡

𝛿𝑡

Figure 1b: 𝑋 = ∞;
acceleration has no effect on 𝑋

growth rate ̇
�̂� at 𝐴 as

𝑥(𝐴,
̇
�̂�) ≡ lim

𝐴→𝐴
+

Δ𝑋(�̂�[𝐴,𝐴,
̇
�̂�], 𝑎)

𝐴 − 𝐴

. (7)

This is the increase in probability of survival achieved by replacing path 𝑎 with a
similar path �̂� which grows at rate ̇

�̂� across a short range of technology states above
𝐴, per unit of change in the technology state.

Proposition 1 (Risk impact of acceleration given state risk only).
Given a technology path “𝑎” and a technology state 𝐴 ≥ 𝑎0,

1. 𝑥(𝐴, ̇�̂�) = 0 if 𝛿(𝐴) = 0 and strictly decreases in ̇
�̂� if 𝛿(𝐴) > 0.

Thus in either case, infinitely fast growth is risk-minimizing.

2. Given an acceleration �̂� from 𝐴 to 𝐴, Δ𝑋(�̂�, 𝑎) = ∫
𝐴

𝐴
𝑥(𝐴,

̇
�̂�𝐴)𝑑𝐴 ≤ 0.

Proof. Substituting (6) into (7), because 𝛿(⋅) is continuous and 𝑎 is 1, 𝑥(𝐴, ̇�̂�) =

𝛿(𝐴)(
̇
�̂�
−1

− �̇�
−1

𝐴
). Both parts of the result follow immediately.

Stagnation. Choosing 𝑡∗, and denoting 𝐴∗
≡ 𝑎𝑡∗ , call �̂� a stagnation at 𝐴∗ if

�̂�𝑡 =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑎𝑡 , 𝑡 < 𝑡
∗
;

𝐴
∗
, 𝑡 ≥ 𝑡

∗
.
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Stagnations are in some sense extreme decelerations, but their risk impact depends on
the value of 𝛿(𝐴∗

).
If 𝛿(𝐴∗

) > 0, stagnation at 𝐴∗ renders cumulative risk infinite. The hazard rate is
permanently positive, and survival is impossible. For illustration, consider the impli-
cations of a large negative shock today returning the world to the technology state it
inhabited in 1925. This reset would doom us to relive the nuclear standoffs, emissions-
intensive industrializations, and biotechnological hazards of the past. If any of these
pose any existential risk at all, then with enough replays of the past century, catastro-
phe is inevitable.

Stagnation at 𝐴∗ is safe only if 𝛿(𝐴∗
) = 0, so that from 𝑡

∗ onward, cumulative risk
is zero. The key difference between stagnation and mere deceleration is that given
deceleration, technology still crosses every state from 𝑎0 to 𝑎∞ once: we simply spend
longer in each state and so endure more risk in it. Given stagnation, on the other hand,
we avoid states 𝐴 > 𝐴

∗ altogether.

2.3 Accrued state risk

Ageneralizedmodel of state-based risk is suggested by the climatemodeling literature.
Suppose that, as we spend time in a given technology state, we accrue some stock

𝑀 on which the hazard rate depends. In state 𝐴, the stock grows at rate 𝑚(𝐴), so that

𝑀𝑡 = 𝑀0 + ∫

𝑡

0

𝑚(𝐴𝜏)𝑑𝑡,

where 𝑚(⋅) ≥ 0. The hazard rate at 𝑡 weakly increases in𝑀𝑡 , but also depends on how
our technology exacerbates or mitigates the hazard this stock poses:

𝛿𝑡 = 𝛿(𝐴𝑡)𝑝(𝑀𝑡),

where 𝑝(⋅) is non-decreasing and continuous and 𝛿(⋅), as in the simple state riskmodel,
is non-negative and continuous.10

For instance, in the climate context, 𝑀 might denote the quantity of greenhouse
gases in the atmosphere, weighted by their contribution to warming.11 Then 𝑚(𝐴)

denotes the emissions rate in state 𝐴. If the temperature increases logarithmically in

10Note that if 𝑚(⋅) = 0 or 𝑝(⋅) is constant, this model reduces to the simple state risk model.
11Kasirzadeh (2025) argues for a model of x-risk from AI with qualitatively similar features.
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atmospheric greenhouse gas concentration,12 and the probability per unit time of trig-
gering a catastrophic climate feedback loop increases quadratically in the temperature
above the preindustrial baseline,13 we have

𝛿𝑡 ∝ 𝛿(𝐴𝑡)
(
ln
(
1 +

∫

𝑡

0

𝑚(𝐴𝜏)𝑑𝜏
))

2

,

where time 0 denotes the beginning of industrialization.
For our purposes, the implications of accrued state risk are the same as the impli-

cations of simple state risk. Cumulative risk on technology path 𝑎 equals

𝑋(𝑎) =
∫

𝑎∞

𝑎0

𝛿(𝐴)𝑝
(∫

𝐴

𝑎0

𝑚(𝐵)�̇�
−1

𝐵
𝑑𝐵

)
�̇�
−1

𝐴
𝑑𝐴.

An acceleration from 𝐴 to 𝐴 weakly lowers cumulative risk both directly, by decreas-
ing the time spent in each technology state𝐴 ∈ (𝐴,𝐴) (raising the �̇�𝐴 term in the outer
integral), and indirectly, by decreasing the accrual during (𝐴,𝐴) and thus decreasing
the hazardous stock in states 𝐴 > 𝐴 (raising the �̇�𝐵 term in the inner integral). For
simplicity, we will work with the simple state risk model going forward.14

3 Transition risk

A hazard function of the form 𝛿(𝐴) captures what we have called “state risk”. But risk
may also be “transitional”: posed by the process of developing and deploying new tech-
nologies, rather than by their existence once deployed. This is the intuition captured
by Jones’s (2016) “Russian roulette” model of technological development and (2024)
model of AI risk, and by Bostrom’s (2019) analogy to drawing potentially destructive
balls from an urn.

We will first consider the case in which all risk is transitional. In this case, stag-
nation is safe. Nevertheless, even here, we will see that acceleration from a positive-

12Following Romps et al. (2022).
13Roughly following the conventional assumption, from e.g. Nordhaus’s DICE model, that damages

increase quadratically in temperature above baseline (Nordhaus and Sztorc, 2013).
14If 𝑚(⋅) may be negative, e.g. because in some states carbon is removed from the atmosphere, the

risk impact of acceleration is ambiguous in such states. The impact on 𝑋 via decreasing time spent in
each state is negative, but the impact via affecting the stock accrued in later states is positive. In states
𝐴 with 𝑚(𝐴) ≥ 0, acceleration remains risk-minimizing.
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growth baseline may lower or not impact cumulative risk, depending on the elasticity
of the hazard rate to the speed of technological development.

We will then consider the case in which we face both state and transition risk, and
characterize risk-minimizing growth when the risks posed by faster growth trade off
against the safety that comes from escaping existing risks more quickly.

3.1 Transition risk only

To consider the case in which technological development is the only source of risk,
posit that the hazard rate takes the form

𝛿(𝐴, �̇�) = 𝑓 (𝐴)�̇�
𝛾
, 𝛾 > 0 (8)

where 𝑓 (⋅) is positive and continuous.
The 𝑓 (𝐴) term appears in the hazard function because the safety of the “exper-

iments” needed to develop technologies just beyond the frontier 𝐴 may depend on
what this frontier is. Introducing one new technology in a given period (�̇� = 1) poses
greater risk the further advanced the technology frontier is if 𝑓 (⋅) is increasing, and
less risk if 𝑓 (⋅) is decreasing.15

If 𝛾 > 1, a sequence of experiments posesmore risk if they are performed in parallel
than if they are performed in sequence. This may happen, for example, if society is
resilient enough to withstand a sequence of small disasters but not to withstand many
simultaneously. If 𝛾 < 1, the experiments pose less risk if performed in parallel.

Consider the case of 𝑓 (𝐴) ∝ 1/𝐴 and 𝛾 = 1:

𝛿𝑡 ∝ �̇�𝑡/𝐴𝑡 .

Here, each proportional increase to 𝐴 induces the same hazard, independently of how
quickly it occurs. This model is essentially equivalent to the “Russian roulette” model
of Jones (2016) and the AI risk model of Jones (2024).

Acceleration and risk. Let 𝑎 denote a technology path maintaining the conditions
listed in Section 2.2.

15Alternatively, to interpret one “new technology” as a proportional increase to 𝐴, rewrite (8) as 𝛿 =

̃
𝑓 (𝐴𝑡)(�̇�𝑡/𝐴𝑡)

𝛾 where ̃
𝑓 (𝐴) ≡ 𝑓 (𝐴)𝐴

𝛾 . On this interpretation, developing more advanced technology
poses greater risk iff ̃

𝑓 (𝐴) increases in 𝐴.



11

The impact of acceleration on cumulative risk depends on whether 𝛾 is greater or
less than 1. This can again be seen by integrating the hazard curve with respect to 𝐴:

𝑋(𝑎) =
∫

∞

0

𝑓 (𝑎𝑡)�̇�
𝛾

𝑡
𝑑𝑡 =

∫

𝑎∞

𝑎0

𝑓 (𝐴)�̇�
𝛾−1

𝐴
𝑑𝐴.

Given an acceleration �̂� from 𝐴 to 𝐴,

𝑋(�̂�) = 𝑋(𝑎) +
∫

𝐴

𝐴

𝑓 (𝐴)(
̇
�̂�
𝛾−1

𝐴
− �̇�

𝛾−1

𝐴 )𝑑𝐴.

Since ̇
�̂�𝐴 > �̇�𝐴, the integral is negative if 𝛾 < 1, zero if 𝛾 = 1, and positive if 𝛾 > 1.

Because the Jones models implicitly adopt 𝛾 = 1, they imply that the speed of
technological development does not affect cumulative risk, except in that stagnation
(�̇� = 0) eliminates risk entirely.16

3.2 State risk and transition risk

Suppose we face both risk types, so that

𝛿(𝐴, �̇�) = ℎ(𝐴) + 𝑓 (𝐴)�̇�
𝛾
. (9)

Assume that ℎ(⋅) and 𝑓 (⋅) are continuous. Assume also that ℎ(⋅) and 𝑓 (⋅) are strictly
positive, to avoid the trivial case in which stagnation is perfectly safe, and that 𝛾 > 1,
since we have shown that in the 𝛾 ≤ 1 cases acceleration is always risk-minimizing.
We now face the tradeoff that acceleration lowers state risk but raises transition risk.
We will see that a positive but finite growth rate is risk-minimizing.

The risk-minimizing growth rate. By the logic of (3), the hazard endured at
technology state 𝐴, given growth rate �̇�𝐴, equals

𝛿𝑡 �̇�
−1

𝐴
= ℎ(𝐴)�̇�

−1

𝐴
+ 𝑓 (𝐴)�̇�

𝛾−1

𝐴
, (10)

16This is true even though the models imply a finite technology level 𝐴∗ at which it is welfare-
maximizing to halt technological development: the speed at which we grow to 𝐴

∗ does not affect cu-
mulative risk.
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which is minimized by

�̇�
∗

𝐴
≡
(

1

𝛾 − 1

ℎ(𝐴)

𝑓 (𝐴)
)

1/𝛾

. (11)

Since the indexing of technology states is arbitrary here, we may let 𝐴 denote the
current technology level, and normalize the current growth rate �̇�𝐴 to 1, so that the
current transition hazard 𝑓 (𝐴). Then (11) shows that the risk-minimizing ratio of state
to transition hazard is 𝛾 − 1. That is, slower growth is safer if state hazard is less than
𝛾 −1 times as high as transition hazard, and vice-versa. This follows straightforwardly
from the fact that the elasticity of transition hazard to the growth rate is 𝛾 − 1 times
the negative (unit) elasticity of state hazard to the growth rate. If 𝛾 = 2, for instance,
the risk-minimizing growth rate sets the state and transition hazards equal.

Consider a bicyclist beside a busy road, with some positive probability per unit
time of being hit at any given speed (including zero). Even if the probability of an
accident per unit time increases in the cycling speed, halting is not safe: it guarantees
that an accident will occur eventually. Indeed, unless the hazard rate more than dou-
bles as speed doubles, at some margin, the safest plan is to bike home as quickly as
possible. If the hazard rate does increase superlinearly with speed, the risk-minimizing
speed is such that moving 1% more quickly would produce a 1% increase to the hazard
rate, just offsetting the 1% decrease in time spent on the road.

The risk-minimizing technology path. Given 𝐴0, let 𝑎∗ denote the technology
path that satisfies (11) at all 𝐴 ≥ 𝐴0. As we can see, �̇�∗

𝐴
rises with ℎ(𝐴)/𝑓 (𝐴). That is,

risk-minimizing growth accelerates with time if, when the technology state advances,
state hazard rises by a greater proportion (or falls by a smaller proportion) than tran-
sition hazard does at any given growth rate.

For illustration, suppose

ℎ(𝐴) =
̄
ℎ𝐴

𝛼
, 𝑓 (𝐴) =

̄
𝑓 𝐴

𝜁 (12)

for some ̄
ℎ > 0, ̄

𝑓 > 0, and assume 𝛾 > 1. Then

�̇�
∗

𝐴
∝ 𝐴

𝛼−𝜁

𝛾
,



13

so 𝑎
∗

𝑡
grows power-functionally if 𝛼 < 𝜁 + 𝛾 , hyperbolically if the inequality is re-

versed (!), and exponentially if the terms are equal.17 Positive state risk ensures that
stagnation, or even asymptotic stagnation, is never risk-minimizing.

Substituting (12) into (11), both into (10), and composing the integral, we have

𝑋(𝑎
∗
) =

[

̄
ℎ
(

1

𝛾 − 1

̄
ℎ

̄
𝑓
)

−
1

𝛾

+
̄
𝑓
(

1

𝛾 − 1

̄
ℎ

̄
𝑓
)

𝛾−1

𝛾

]
∫

∞

𝐴0

𝐴

𝜁−𝛼+𝛼𝛾

𝛾
𝑑𝐴. (13)

It follows that𝑋(𝑎
∗
) is finite, and survival feasible, iff the exponent on𝐴 in the integral

is negative: that is, iff 𝛼(𝛾 − 1) + 𝜁 < 0.18 Because 𝛾 > 1, survival is possible only if 𝛼
or 𝜁 is negative. Intuitively, to survive, either more advanced technology states must
(eventually, at least) carry hazard rates that fall toward zero—in this setting, 𝛼 must
be negative—or we must grow ever more quickly, so that the state hazard endured per
state, ℎ(𝐴)�̇�−1

𝐴
, diminishes. In the latter case, however, a positive value of 𝜁 implies

that the transition hazard increases.

In summary, defining risk impact 𝑥(𝐴, ̇�̂�) as in (7):

Proposition 2 (Risk-minimizing growth given state and transition risk).
Given technology path “𝑎”, technology state 𝐴 ≥ 𝑎0, and hazard function

𝛿(𝐴, �̇�) = ℎ(𝐴) + 𝑓 (𝐴)�̇�
𝛾

with continuous ℎ(⋅) ≥ 0 and 𝑓 (⋅) > 0:

1. If 𝛾 < 1 [= 1], infinitely fast growth is risk-minimizing:

• 𝑥(𝐴,
̇
�̂�) [weakly] decreases in ̇

�̂�.

• Given an acceleration �̂� from 𝐴 to 𝐴, Δ𝑋(�̂�, 𝑎) = ∫
𝐴

𝐴
𝑥(𝐴,

̇
�̂�𝐴)𝑑𝐴 < [=] 0.

2. If 𝛾 > 1,

• 𝑥(𝐴, �̇�) is uniquely minimized by �̇� = �̇�
∗

𝐴
≡

(

1

𝛾−1

ℎ(𝐴)

𝑓 (𝐴))

1/𝛾

, which is finite
iff 𝑓 (𝐴) > 0 and positive iff ℎ(𝐴) > 0.

17In the last case, substituting (12) into (11) and dividing both sides by 𝐴 shows that the risk-
minimizing growth rate is ((𝛾 − 1)

̄
𝑓 /

̄
ℎ)

−1/𝛾 : e.g. if ̄
𝑓 =

̄
ℎ and 𝛾 = 2, 100% per year.

18Note that this condition is independent of the 𝛾 vs. 𝛼−𝜁 condition for the functional form of 𝑎∗(⋅).
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Proof. Substitute

Δ𝑋(�̂�, 𝑎) ≡
∫

𝐴

𝐴
(
ℎ(𝐴)�̇�

−1

𝐴
+ 𝑓 (𝐴)�̇�

𝛾−1

𝐴
− ℎ(𝐴)

̇
�̂�
−1

𝐴
− 𝑓 (𝐴)

̇
�̂�
𝛾−1

𝐴 )
𝑑𝐴

into (7). Because ℎ(⋅), 𝑓 (⋅) are continuous and 𝑎 is 1,

𝑥(𝐴,
̇
�̂�) = ℎ(𝐴)�̇�

−1

𝐴
+ 𝑓 (𝐴)�̇�

𝛾−1

𝐴
− ℎ(𝐴)

̇
�̂�
−1

− 𝑓 (𝐴)
̇
�̂�
𝛾−1

⟹

𝜕𝑥

𝜕
̇
�̂�

(𝐴,
̇
�̂�) = ℎ(𝐴)

̇
�̂�
−2

− (𝛾 − 1)𝑓 (𝐴)
̇
�̂�
𝛾−2

. (14)

The first result follows immediately. The second (in the 𝑓 (𝐴) > 0, ℎ(𝐴) > 0 case)
follows from the fact that (14) has a unique zero and is positive as ̇

�̂� → 0.

Corollary 2.1.
Suppose ℎ(𝐴) ∝ 𝐴

𝛼 , 𝑓 (𝐴) ∝ 𝐴
𝜁 , and 𝜙(�̇�) ∝ �̇�

𝛾 for 𝛾 > 0.

• Survival is feasible iff 𝛼(𝛾 − 1) + 𝜁 < 0.

If this holds:

• If 𝛾 ≤ 1, the risk-minimizing growth rate is infinite.

• If 𝛾 > 1, the risk-minimizing growth path 𝑎
∗ satisfies �̇�∗

𝐴
∝ 𝐴

𝛼−𝜁

𝛾 .

4 Policy

We have assumed so far that cumulative risk depends only on the technology path.
More precisely, we have considered the risk impact of speeding or slowing our move-
ment along a sequence of states, where the “state space” has been defined finely
enough that our location in it and rate of motion through it captures every feature
of the world relevant to the hazard rate.

If we describe the risk-relevant state of the world by a pair of features (𝐴, 𝐵), we
can say nothing from first principles about the risk impact of accelerating the 𝐴-path
from 𝑎 to �̂� in isolation. As an important example, suppose the hazard rate depends
on the state of technology 𝐴 and policy 𝐵, with

𝛿(𝐴, 𝐵) = 𝐴/𝐵,
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and our policy framework for mitigating risk improves exogenously:

𝐵𝑡 = 𝑒
𝑔𝐵𝑡

, 𝑔𝐵 > 0.

Then trivially, if 𝐴 cannot decrease, technological stagnation is safest. Indeed, if 𝑎𝑡 =
𝑒
𝑔𝐴𝑡 for 𝑔𝐴 ∈ [0, 𝑔𝐵), the hazard rate declines exponentially, so 𝑋 is finite and survival
is possible; whereas given a permanent acceleration to �̂�(𝑡) = 𝑒

�̂�𝐴𝑡 for �̂�𝐴 ≥ 𝑔𝐵, the
hazard rate is constant or rises exponentially, so 𝑋 is infinite and survival impossible.

In this section we explore the risk-minimizing technology path, 𝑎∗, when the haz-
ard rate depends on the state of technology and policy. Instead of an exogenous policy
path as above, however, we assume that policy is set by a planner aiming to maxi-
mize discounted expected utility. More precisely, we index technology states so that
𝐴 equals feasible consumption per capita.19 In each period, the planner decides how
much consumption to forego to lower the hazard rate.

As we will see, when policy is set optimally, the conclusion of Section 2—that a
faster rate of technological development carries lower cumulative risk—is not only
maintained but strengthened. We then consider how policy frictions, making policy
less effective (ormore costly) when technology changesmore quickly, may reintroduce
a kind of transition risk.

4.1 Environment

Preferences. A planner seeks to maximize discounted expected utility,20 where flow
utility is isoelastic in consumption:

∫

∞

0

𝑒
−𝜌𝑡

𝑆𝑡 𝑢(𝐶𝑡) 𝑑𝑡 (15)

𝑢(𝐶) =

𝐶
1−𝜂

− 1

1 − 𝜂

, 𝜂 > 1. (16)

19So the assumption that 𝑎𝑡 increases is now substantive: potential consumption grows over time.
20We may suppose that the population is fixed and (15) is the expected utility of a representative

household, or that population grows exponentially at rate 𝑛 < 𝜌, the discount rate is 𝜌 + 𝑛, and the
planner adopts the total utilitarian social welfare function.



16

The utility of death is normalized to 0 and the death-equivalent consumption level to
1. We skip the 𝜂 < 1 case for two reasons (and the 𝜂 = 1 edge case for simplicity).21

First, it does not seem to be empirically relevant, either currently (see e.g. Hall
(1988), Lucas (1994), and Chetty (2006)) or, especially, in the very long run (see Ap-
pendix A).

Second, if 𝜂 > 1, marginal utility in consumption diminishes quickly enough that,
given any choice between accelerating consumption growth and increasing the prob-
ability of survival, the non-discounted benefits of the latter predominate in the long
run (see Appendix A). By contrast, if 𝜂 < 1 and consumption grows at rate 𝑔 , flow
utility grows at rate (1 − 𝜂)𝑔 as consumption grows large, and accelerating consump-
tion growth and reducing x-risk both produce streams of increases to expected flow
utility that grow indefinitely at rate (1 − 𝜂)𝑔 . Thus concern for the long-term future
would not generally motivate severely slowing consumption growth for safety in the
first place.

Production technology. Index technology states 𝐴 by potential consumption. In-
dex policy 𝐵𝑡 ∈ [0, 1] by the fraction of potential consumption that is forgone. Con-
sumption at 𝑡 then equals

𝐶𝑡 = 𝐴𝑡(1 − 𝐵𝑡). (17)

We will call 𝐵 the safety share, but choices of 𝐵 > 0 may constitute explicit spending
on services like pandemic monitoring and/or bans on risky production processes.

We assume that a technology path 𝑎 satisfies 𝑎0 ≥ 1 and the continuity conditions
listed in Section 2.2.

The hazard rate. The hazard rate is a function of the technology and policy vari-
ables. We will assume that, for 𝐴 ≥ 1, the hazard function 𝛿(𝐴, 𝐵) is 2;22

D1 decreases and is convex in 𝐵, with 𝛿(𝐴, 1) = 0; and

D2 satisfies 𝛼(𝐴, 𝐵) < 𝛽(𝐴, 𝐵),

where 𝛼(𝐴, 𝐵) denotes the elasticity of 𝛿 to 𝐴 (which may have any sign) and 𝛽(𝐴, 𝐵)

21As is not uncommon in the economics literature on catastrophic risk: e.g. Martin and Pindyck
(2015, 2021) impose 𝜂 > 1.

22We define 𝜕𝛿

𝜕𝑦
(𝐴, 0) ≡ lim𝐵→0

𝜕𝛿

𝜕𝑦
(𝐴, 𝐵) for 𝑦 ∈ {𝐴, 𝐵}, and allow these derivatives to be infinite.
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denotes the elasticity of 𝛿 to 1 − 𝐵 (which must be non-negative).
D1 ensures that the hazard rate is positive if the safety share is not maximal. If a

safety share less than 1 can secure a zero hazard rate, the result of Section 4.2—that
growth can yield safety by motivating more stringent policy—is only strengthened.
D1 also ensures that there are weakly diminishing returns to safety spending.

D2 ensures that when technology advances, it is feasible to lower the hazard rate
by retaining the former consumption level, allocating all marginal productive capacity
to safety measures. That is, if 𝐴 increases by, say, 1% and 1 − 𝐵 falls by 1%, so that by
(17) 𝐶 stays fixed, the hazard rate falls. If D2 fails (indefinitely), survival is impossible
unless consumption is driven to zero: an existential catastrophe by other means.

Note that 𝛿(⋅) allows the effectiveness of safety spending to vary arbitrarily with
the technology state.

A planner chooses a policy path 𝑏 = {𝐵𝑡}
∞

𝑡=0
to maximize discounted expected utility

(15) subject to (16)–(17) and a technology path and hazard function.

4.2 The existential risk Kuznets curve

Preliminaries. Given technology path 𝑎, let 𝑏𝑎 denote the optimal continuous
policy path. (Its existence and uniqueness are proved in Prop. 3.)

Let 𝑆(𝑎, 𝑏) denote the survival curve given technology and policy paths 𝑎, 𝑏 . De-
fine 𝑋(𝑎, 𝑏) and the hazard curve 𝛿(𝑎, 𝑏) likewise.

Let 𝑣𝑡(𝑎, 𝑏) denote the expected value of the future of civilization, as of 𝑡 (assuming
survival to 𝑡), given survival curve 𝑆(𝑎, 𝑏) and consumption path 𝑎(1 − 𝑏):

𝑣𝑡(𝑎, 𝑏) ≡ ∫

∞

𝑡

𝑒
−𝜌(𝜏−𝑡)

𝑆𝜏(𝑎)

𝑆𝑡(𝑎)

𝑢(𝑎𝜏(1 − 𝑏𝜏))𝑑𝜏. (18)

Denote 𝑆(𝑎) ≡ 𝑆(𝑎, 𝑏𝑎), and 𝑣(𝑎), 𝑋(𝑎), and 𝛿𝑡(𝑎) likewise.
Denote the consumption share [path] �̃� ≡ 1 − 𝐵, ̃𝑏 ≡ 1 − 𝑏 .

Observation 1. 𝑣𝑡(𝑎) > 0.

Proof. It is feasible for the planner to choose 𝑏𝑡 = 0 ∀𝑡. This implements a path of
flow utility given survival that begins non-negative (with 𝐶0 = 𝑎0 ≥ 1) and rises.
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Observation 2. If �̂�𝜏 > 𝑎𝜏 for all 𝜏 ≥ 𝑡, with strict inequality for some 𝜏 ≥ 𝑡, then
𝑣𝑡(�̂�) > 𝑣𝑡(𝑎).

For a proof, see Appendix B.1. For intuition, define policy path 𝑏 (from 𝑡 onward) by

�̂�𝑡(1 − 𝑏𝑡) = 𝑎𝑡(1 − 𝑏𝑎𝑡), (19)

so the consumption path from 𝑡 given �̂�, 𝑏 equals that given 𝑎, 𝑏𝑎. By D2, we have
𝛿𝜏(�̂�, 𝑏) ≤ 𝛿𝜏(𝑎, 𝑏𝑎) for all 𝜏 > 𝑡, with strict inequality for some 𝜏 > 𝑡. Thus �̂� allows
for weakly more consumption and safety than 𝑎.

Observation 3. 𝑣𝑡(𝑎) increases to a finite limit.

Proof. Given 𝜏 > 0, define �̂�𝑡 ≡ 𝑎𝑡+𝜏 . Because 𝑎 increases, �̂�𝑡 > 𝑎𝑡 . By Obs. 2,
𝑣𝑡+𝜏(𝑎)[≡ 𝑣𝑡(�̂�)] > 𝑣𝑡(𝑎). Because 𝑢(𝐶𝑡) <

1

𝜂−1
, 𝑣𝑡 < 𝑣 ≡

1

𝜌(𝜂−1)
.

Observation 4. Optimal policy at 𝑡 must satisfy the first-order condition that the loss
in flow utility from marginally increasing the safety share weakly exceeds the benefit
via reducing the hazard rate and increasing the probability that 𝑣𝑡 is realized:

𝜕

𝜕𝑏𝑎𝑡

𝑢(𝑎𝑡(1 − 𝑏𝑎𝑡)) − [

𝜕

𝜕𝑏𝑎𝑡

𝛿(𝑎𝑡 , 𝑏𝑎𝑡)
]
𝑣𝑡(𝑎) ≤ 0, (20)

with inequality only if the marginal value of safety spending is negative even at the
𝐵 = 0 corner. The lower Inada condition on 𝑢(⋅) ensures that 𝐵 = 1 is never optimal.
A proof of the necessity of FOC (20) is given in the proof of Prop. 3 (Appendix B.2.)

Example: constant elasticities. Suppose the technology path is 𝑎𝑡 = 𝑒
𝑔𝑡 for 𝑔 > 0.

Suppose that the hazard function features constant 𝛼 and 𝛽:

𝛿(𝐴, 𝐵) =
̄
𝛿𝐴

𝛼
(1 − 𝐵)

𝛽
,

̄
𝛿 > 0, 𝛽 > 𝛼 ≥ 0, 𝛽 ≥ 1, (21)

so that the hazard rate falls from ̄
𝛿𝐴

𝛼 to 0 as policy grows more stringent.
𝛽 ≥ 1 maintains D1 and 𝛽 > 𝛼 maintains D2. We here also impose 𝛼 ≥ 0 so

that fixing 𝐵 < 1, 𝛿 increases in 𝐴. This grants that the direct impact of technological
development is to weakly increase the hazard rate, against the indirect impact of po-
tentially lowering the hazard rate by motivating more safety spending. If 𝛼 < 0, the
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hazard rate falls due to technological development alone, as would be necessary for
survival in the policy-free model of Section 2.

Substituting (16) and (21) into (20), differentiating, and rearranging:

̃
𝑏𝑎𝑡 = min

((
̄
𝛿𝛽𝑣𝑡(𝑎))

−
1

𝛽+𝜂−1
𝑎

−
𝛼+𝜂−1

𝛽+𝜂−1

𝑡
, 1

)
. (22)

Recalling that 𝑎𝑡 and 𝑣𝑡(𝑎) increase, the optimal policy is to spend nothing on safety
until the first term of the maximum is positive; ̃𝑏𝑎 then falls from 1 toward 0.

The reason why has been understood at least since Hall and Jones (2007): when
𝜂 > 1, safety is a luxury good. As 𝐴 rises, if the consumption share �̃� is fixed, the
safety benefits of marginally lowering it are valued more highly, because “life” (here,
civilization) is more valuable.23 On the other hand, the utility cost of a proportional
consumption cut falls given 𝜂 > 1.

Let 𝑡𝑎 denote the last period at which zero safety spending is optimal.

Initial risk increases — At 𝑡 < 𝑡𝑎, the hazard rate equals 𝛿𝑡 = ̄
𝛿𝑎

𝛼

𝑡
and grows at rate24

𝑔
𝛿𝑡

= 𝛼𝑔 ≥ 0. (23)

Eventual risk declines — After 𝑡𝑎, by (22), the consumption share �̃� grows at rate

𝑔
̃
𝑏𝑎,𝑡

= −

1

𝛽 + 𝜂 − 1

𝑔
𝑣(𝑎),𝑡

−

𝛼 + 𝜂 − 1

𝛽 + 𝜂 − 1

𝑔 < 0. (24)

The hazard rate in turn grows as

𝑔
𝛿𝑡

= 𝛼𝑔 + 𝛽𝑔
̃
𝑏𝑎,𝑡

= −

(𝛽 − 𝛼)(𝜂 − 1)

𝛽 + 𝛾 − 1

𝑔 −

𝛽

𝛽 + 𝜂 − 1

𝑔
𝑣(𝑎),𝑡

< 0, (25)

which is negative by 𝛽 > 𝛼, 𝜂 > 1, and Obs. 3. The indirect negative impact of
growth on the hazard rate, by increasing the safety share, outweighs any positive
impact imposed by 𝛼.

23Here, also because the hazard rate is higher when 𝐴 rises and its elasticity in �̃� is constant.
24We let 𝑔𝑥𝑡 denote the exponential growth rate of variable 𝑥 at 𝑡.
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The boundedness of 𝑣 (Obs. 3) gives us the asymptotic negative growth rates of �̃�
and 𝛿, as well as that of consumption 𝐶 = 𝐴�̃�:25

lim
𝑡→∞

𝑔𝐶𝑡 =
(
1 −

𝛼 + 𝜂 − 1

𝛽 + 𝜂 − 1
)
𝑔 =

𝛽 − 𝛼

𝛽 + 𝜂 − 1

𝑔 > 0. (26)

Survival — Because 𝛽 > 𝛼, by (25) the hazard rate falls exponentially in the limit. So
𝑋(𝑎) < ∞ and 𝑆∞(𝑎) > 0.

General result. Increases in productive capacity motivate increases to the “safety
share” 𝐵 under conventional assumptions which imply that safety is a luxury good.
Furthermore, our example illustrates that if 𝛼 and 𝛽 are fixed and technology grows
exponentially, the rise in the safety share renders the probability of survival positive
whenever survival is compatible with non-negative consumption growth (𝛽 > 𝛼).

However, the “Kuznetsian” dynamic is not strong enough to produce a positive
probability of survival in general. We now characterize whether a given hazard func-
tion and technology path permit survival, given a planner with preferences (15)–(16),
in close to full generality. Though the condition is somewhat complex, it offers a help-
ful way to evaluate this key property of a hazard function. It also illustrates why, given
slow growth or low risk aversion (𝜂), the planner may sometimes choose a policy that
precludes survival despite its feasibility.

Proposition 3 (The existential risk Kuznets curve and survival).
Given a hazard function 𝛿(⋅), a technology path “𝑎” that is either 1 with a positive
derivative or an acceleration to one that is, and preferences (15)–(16):

1. An optimal continuous policy path 𝑏𝑎 exists and is unique.

Define �̄�(𝑝) ≡ lim𝑡→∞ 𝑎𝑡𝑡
−

𝑝

𝜂−1 ,

𝐷(𝑘) ≡

⎧
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎩

lim𝑡→∞
[
−

𝜕𝛿

𝜕𝐵(
𝑎𝑡 , 1 − 𝑡

𝑘

𝜂−1

/𝑎𝑡)]
𝑡

𝑘𝜂

𝜂−1

/𝑎𝑡 , lim
𝑝→1

+ �̄�(𝑝) > 0;

lim𝑡→∞
[
−

𝜕𝛿

𝜕𝐵(
𝑎𝑡 , 0)]

𝑡
𝑘
, �̄�(1) = 0.

25The fact that 𝑣 rises to an upper bound does not strictly imply 𝑔𝑣 → 0. A proof that 𝑔𝑣 → 0 in this
example is available upon request.
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2a. If lim
𝑘→1

+ 𝐷(𝑘) = 0, then 𝑆∞(𝑎) > 0.

2b. If 𝐷(1) > 0 and 𝛽(⋅) is upper-bounded, then 𝑆∞(𝑎) = 0.

Proof. See Appendix B.2.

To interpret the survival condition, recall that if the optimal consumption share (1 −
𝑏𝑎𝑡) is interior in the limit, the flow utility gained by marginally raising it 𝑎𝑡𝑢′(𝐶𝑡)

must equal the cost, via increased risk, of marginally raising it. Rearranging (20):

(𝑎𝑡(1 − 𝑏𝑎𝑡))

1−𝜂 (27)

=

𝜕𝛿(𝑎𝑡 , 𝑏𝑎𝑡)

𝜕(1 − 𝑏𝑎𝑡)

(1 − 𝑏𝑎𝑡)𝑣𝑡(𝑎). (28)

Suppose that 𝑣𝑡 = 𝑣 is constant (c.f. Obs. 3). Suppose also that 𝛽(⋅) is constant:

(1 − 𝑏𝑡)

𝜕𝛿(𝑎𝑡 , 𝑏𝑡)

𝜕(1 − 𝑏𝑡)

= 𝛽 𝛿𝑡(𝑎, 𝑏). (29)

Substituting (29) into (28), we see that if the optimal safety share is eventually interior,
the integral of the hazard curve 𝑋(𝑎) converges and 𝑆∞ > 0 if (27) is bounded above in
the limit by 𝑡−𝑘 for 𝑘 > 1. If (27) is bounded below in the limit by a curve proportional
to 𝑡

−1, 𝑋(𝑎) = ∞ and 𝑆∞ = 0.
Let 𝑏

𝑘𝑡
≡ 1− 𝑡

𝑘

𝜂−1
/𝑎𝑡 denote the policy path maintaining (𝑎𝑡(1−𝑏

𝑘𝑡
))
1−𝜂

= 𝑡
−𝑘. If

𝑎𝑡 grows faster than 𝑡

𝑝

𝜂−1 for some 𝑝 > 1, 𝐷(𝑘) is proportional to the limit of (28)/(27)
with 𝑏

𝑘
in place of 𝑏𝑎. If there is a 𝑘 ∈ (1, 𝑝)with 𝐷(𝑘) = 0, then even policy path 𝑏

𝑘
—

which is feasible and permits survival—lowers the hazard rate suboptimally slowly. If
𝐷(1) > 0, even 𝑏1—which does not—lowers the hazard rate too fast.

If �̄�(1) < 0, 𝑎 grows so slowly that 𝑏
𝑘
is infeasible (i.e. eventually exceeds 1) for

any 𝑘 > 1. We are thus functionally in the state-risk-only case of Section 2. Unless 𝛽(⋅)
can grow arbitrarily high, so that small safety expenditures grow arbitrarily effective,
survival requires technology growth eventually to lower the hazard rate faster than
1/𝑡 on its own.
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4.3 Illustrations

Example 1: constant elasticities. The optimal policy path and the corresponding
hazard curve are simulated below, for hazard function (21), technology path

𝑎𝑡 = 2𝑒
𝑔𝑡
, (30)

and the parameter values in Table 1.

𝜌 0.02 ̄
𝛿 0.00012

𝜂 1.5 𝛼 1
𝑔 0.02 𝛽 2

Table 1: Simulation parameters for Figure 2

The values of 𝜌, 𝜂, and 𝑔 have been chosen as central estimates from the macroe-
conomics literature. 𝑎0 = 2 is chosen so that the value of a statistical life-year at 𝑡 = 75

is four times consumption per capita, roughly matching estimates from Klenow et al.
(2025).26 That is, the first year of the simulation might be taken to denote 1950, and
the 75th year might be taken to denote the time of writing. ̄

𝛿, 𝛼, and 𝛽 are chosen so
that the hazard rate today is ∼0.1%, matching Stern’s (2007) oft-cited figure; so that the
hazard rate begins to fall at 𝑡 ≈ 100; and so that the growth and decay of the hazard
rate are non-negligible.

On these parameters, the probability of survival 𝑆∞ from 𝑡 = 75 onward is ∼65%.

26They estimate that this ratio was approximately 5 in the United States in 2019. The figure must be
adjusted upward in light of economic growth since 2019, but downward insofar as the model is intended
to describe the path of optimal policy across all countries advanced enough to be deploying existentially
hazardous technology.
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Figure 2: Evolution of policy and risk given hazard function (21)

Example 2: a lower Inada condition on safety spending. As (23) and (25) show
and Figure 2 illustrates, an unrealistic feature of hazard function (21) is that as soon
as it is worth spending on safety at all, optimal spending rises rapidly enough that the
hazard rate falls. This can be remedied by using a hazard function with a lower Inada
condition on safety spending, such as

𝛿(𝐴, 𝐵) =
̄
𝛿𝐴

𝛼
(1 − 𝐵)

𝛽
(1 − 𝐵

𝜖
), 𝜖 ∈ (0, 1). (31)

We will choose 𝜖 = 0.6, 𝛽 = 1, and 𝑎0 = 2.03, and otherwise the parameter values of
Table 1. The lower Inada condition ensures that the optimal safety share 𝑏𝑎 is always
positive, and as it rises smoothly, the hazard rate rises and falls smoothly.27

27
𝛽 is decreased by 1 for similarity with Figure 2, to offset the fact that the 1 − 𝐵

𝜖 term increases
the elasticity of the hazard rate to 1 − 𝐵 by 1 when 𝐵 is high (and by ever more as 𝐵 → 0). 𝑎0 is raised
slightly in order to maintain that the value of a statistical life-year “today” (at 𝑡 = 75) is four times per
capita consumption, and the hazard rate is approximately 0.1%, despite the fact that here consumption
and the hazard rate are less than maximal at 𝑡 < 100.
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Figure 3: Evolution of policy and risk given hazard function (31)

Derivations and code for replicating the simulations may be found in Appendix C.

4.4 Acceleration

If the policy choice at 𝑡 depended only on the technology state at 𝑡—if we had 𝑏𝑎𝑡 =

𝑏(𝑎𝑡)—then, given optimal policy, the hazard function could be expressed as a function
of 𝐴. The impact of acceleration on cumulative risk would thus be precisely as in
Section 2, stated in Prop. 1.

Here, with 𝑏𝑎𝐴 ≡ 𝑏
𝑎,𝑡

−1
(𝐴)

denoting the optimal safety share on technology path
𝑎 when the technology state equals the subscripted 𝐴, cumulative risk equals

𝑋(𝑎) ≡
∫

∞

0

𝛿(𝑎𝑡 , 𝑏𝑎𝑡)𝑑𝑡 = ∫

𝑎∞

𝑎0

𝛿(𝐴, 𝑏𝑎𝐴)�̇�
−1

𝐴
𝑑𝐴.

Define 𝑣𝐴(𝑎) analogously to 𝑏𝑎𝐴. By (20), 𝑏𝑎𝐴 depends not only on 𝐴 but also on
𝑣𝐴(𝑎). In particular, because 𝛿(⋅) in convex in 𝐵 (D1) and is 2,28

𝑏𝑎𝐴 is continuous and weakly increasing in 𝑣𝐴(𝑎).

28I.e. its derivative is 1, so the continuity of 𝑏𝑎𝐴 in 𝑣𝐴(𝑎) follows from the implicit function theorem.
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When the future is more valuable, at a given technology state, it is worth spending
more to save it, unless the 𝑏𝑎𝐴 = 0 corner solution obtains.

Let �̂� be an acceleration to 𝑎 from 𝐴 to 𝐴. Note that if 𝑎 grows exponentially, �̂�
amounts to a level effect.

Observation 5. 𝑣𝐴(�̂�) > 𝑣𝐴(𝑎) ∀𝐴 < 𝐴.

Proof. Let 𝑡−1(𝐴), 𝑡−1(𝐴) denote when technology state 𝐴 is reached on paths 𝑎, �̂�
respectively. Choose 𝐴′

< 𝐴, let Δ𝑡 ≡ 𝑡
−1
(𝐴

′
) − 𝑡

−1
(𝐴

′
) > 0, and define �̃� by

�̃�𝑡 = �̂�𝑡+Δ𝑡 ,

so “𝑡−1(𝐴′
)”= 𝑡

−1
(𝐴). Observe that 𝑣𝐴(�̂�) = 𝑣𝐴(�̃�) ∀𝐴, so 𝑣

𝐴
′(�̂�) = 𝑣

𝑡
−1
(𝐴

′
)
(�̃�). Since

�̃�𝜏 > 𝑎𝜏 ∀𝜏 > 𝑡
−1
(𝐴

′
), we have 𝑣

𝑡
−1
(𝐴

′
)
(�̃�) > 𝑣

𝑡
−1
(𝐴

′
)
(𝑎) ≡ 𝑣

𝐴
′(𝑎) by Obs. 2.

Acceleration thus lowers cumulative risk not only by shrinking the time spent at each
technology state, as in Section 2.2, but also potentially by motivating more stringent
policy at each state before the acceleration ends:

𝑋(�̂�) = 𝑋(𝑎) + Δ𝑋(�̂�, 𝑎),

Δ𝑋(�̂�, 𝑎) ≡
∫

𝐴

𝐴

(𝛿(𝐴, 𝑏�̂�𝐴)
̇
�̂�
−1

𝐴
− 𝛿(𝐴, 𝑏𝑎𝐴)�̇�

−1

𝐴 )𝑑𝐴 < 0. (32)

As in Section 2.2, ̇�̂�−1
𝐴

< �̇�
−1

𝐴
, by definition of acceleration. Here 𝑏

�̂�𝐴
≥ 𝑏𝑎𝐴 also,29 and

thus 𝛿(𝐴, 𝑏
�̂�𝐴
) ≤ 𝛿(𝐴, 𝑏𝑎𝐴), with the inequalities guaranteed to be strict if 𝑏𝑎𝐴 > 0.

Recall from (7) that 𝑥(𝐴, ̇�̂�) denotes the impact on cumulative risk of a brief accel-
eration to growth rate ̇

�̂� while in state 𝐴.

Proposition 4 (Risk impact of acceleration given optimal policy).
Given a technology path “𝑎” and a technology state 𝐴 ≥ 𝑎0,

1. 𝑥(𝐴, ̇�̂�) decreases in ̇
�̂�. Thus infinitely fast growth is risk-minimizing.

2. Given an acceleration �̂� from 𝐴 to 𝐴, Δ𝑋(�̂�, 𝑎) ≤ ∫
𝐴

𝐴
𝑥(𝐴,

̇
�̂�𝐴)𝑑𝐴 < 0.

Proof. Substitute (32) into (7). The continuity of 𝛿(⋅) in both arguments, of
𝑣𝐴(�̂�[𝐴,𝐴,

̇
�̂�]) in 𝐴, and of 𝑏𝑎𝐴 in 𝑣𝐴(𝑎), along with the right-continuity of �̂�[𝐴,𝐴, ̇�̂�]

29Both are defined, by Prop. 3.
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at 𝐴, imply 𝑥(𝐴, ̇�̂�) = 𝛿(𝐴, 𝑏𝑎𝐴)(
̇
�̂�
−1

− �̇�
−1

𝐴
). This establishes the first part of the result.

The second part then follows from (32) and the following discussion.

Comparing this to Prop. 1, 𝑥(𝐴, ̇�̂�) here strictly decreases in ̇
�̂� only because we have as-

sumed 𝛿(𝐴, 𝐵) > 0 (unless 𝐵 = 1, which never obtains). More substantively, Δ𝑋(�̂�, 𝑎)

here may be even more negative than the integral of instantaneous risk impacts be-
cause, at technology states 𝐴 ∈ [𝐴,𝐴), the term in integral (32) is less than 𝑥(𝐴,

̇
�̂�𝐴)

whenever the increased value of the future at these states induced by the faster sub-
sequent growth (Obs. 5) motivates more safety spending.

In sum, optimal policy strengthens the tendency for acceleration to lower state
risk for two reasons.

1. Whereas a state-risk-only model is agnostic about whether later states will be
safer, policy introduces a tendency in this direction: when consumption grows,
the utility cost of marginally sacrificing consumption falls and the value of life
rises, often quickly enough to permit survival (Prop. 3).

2. The prospect of future increases to consumption growth lowers the present haz-
ard rate, because when the value of the future is greater, it is worth sacrificing
more today to prevent its ruin (Prop. 4).

With reference to Fig. 1, the first implication of optimal policy is that 𝑋 is more likely
finite, and the second is that the hazard rate decreases in anticipated future growth.

1 2

𝛿(𝐴1)

𝛿(𝐴2) ←

𝑋

𝑡

𝛿𝑡

1 2

𝛿(𝐴1)

𝛿(𝐴2) ←

𝑋

𝑡

𝛿𝑡

Figure 4: Optimal policy (i) facilitates finite 𝑋 (the left graph rather than the right) and
(ii) lowers the hazard rate associated with each technology level during an acceleration

(the gap between the blue and gray lines from 𝛿(𝐴1) to 𝛿(𝐴2))
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4.5 Policy frictions

We have assumed so far that as the technology state changes, policy can frictionlessly
reallocate resources in the way that best balances consumption and risk-reduction.
This has shown that lack of concern for the future is not enough to overturn the pos-
itive relationship between growth and safety: for any value of 𝜌, if the planner can
always maintain this ideal resource allocation, giving her more resources by acceler-
ating growth lowers cumulative risk in the long run.

However, this frictionlessness is unrealistic. When technology changes more
quickly, safety regulations and expenditures may not be appropriate to the threats
of the day.30 Indeed, this is a primary motivation for positing that the hazard rate in-
creases in the speed of technological change, as explored in Section 3. Suppose there-
fore that the hazard rate is a function of technology 𝐴 and effective safety spending
𝐵eff, where 𝐵eff increases in 𝐵 but decreases in �̇�.

Analogy to transition risk —We will model the risks of faster growth, via less effective
safety spending, in terms cleanly comparable to the reduced-form analysis of transi-
tion risk in Section 3. Recalling that 𝐵 ∈ [0, 1], consider the possibilities

𝐵eff = 𝐵
1+𝑚(𝐴)�̇�

𝛾

, (33)

𝐵eff =

𝐵

(1 + �̇�
𝛾
)
𝑚(𝐴)

, (34)

where arbitrary𝑚(𝐴) > 0 allows the effect of rapidly introducing some technology on
the contemporaneous effectiveness of safety spending to depend on the technology
in question. In (33), the effective safety share ranges from 0 to 1 as 𝐵 does, such that
in principle allocating all economic activity to safety efforts would eliminate risk. In
(34), a positive growth rate upper-bounds 𝐵eff below 1, and so introduces some risk
that safety spending cannot eliminate.

Then consider the hazard function

𝛿(𝐴, 𝐵eff) = ℎ(𝐴) ln(1/𝐵eff), (35)

where the elasticity of ℎ(⋅) is bounded below 1 to satisfy D1. Substituting (33) and (34)
30See Shulman and Thornley (2024), who argue that the current policy response to existential risk

is far from optimal even under a relatively high discount rate.
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into (35), we have, letting 𝑓 (𝐴) ≡ ℎ(𝐴)𝑚(𝐴),

𝛿 = (ℎ(𝐴) + 𝑓 (𝐴)�̇�
𝛾

) ln(1/𝐵), (36)
𝛿 = ℎ(𝐴) ln(1/𝐵) + 𝑓 (𝐴)�̇�

𝛾
. (37)

Fixing 𝐵 ∈ (0, 1), this reduces to the hazard function of Section 3.2.
Note that if we drop the “1” in the exponent of (33), we drop the ℎ(𝐴) term from

(36) and reproduce the transition-risk-only hazard function of Section 3.1.

Acceleration — Let 𝑎 be a technology path and �̂� be an acceleration to it. If 𝑏
�̂�
= 𝑏𝑎, it

follows from the above that Δ𝑋(�̂�, 𝑎) < 0 or > 0 under the same conditions as in Prop.
2, and the risk-minimizing growth path 𝑎

∗ is as characterized there.31 Here, however,
the policy path depends on the technology path. We will see that faster growth tends
to increase safety spending, as in Section 4.4, making the risk-minimizing growth path
faster than characterized in Prop. 2; but that here in general the effect is ambiguous.

By the first-order condition (20), noting that (35) exhibits a lower Inada condition
on safety spending and thus that safety spending is always interior, we have

𝜕𝑢

𝜕𝑏𝑎𝑡

=

𝜕𝛿

𝜕𝑏𝑎𝑡

𝑣𝑡(𝑎),

⟹ 𝑏𝑎𝑡(1 − 𝑏𝑎𝑡)

−𝜂

= 𝑎
𝜂−1

𝑡 (ℎ(𝑎𝑡) + 𝑓 (𝑎𝑡)�̇�
𝛾

𝑡 )
𝑣𝑡(𝑎),

𝑏𝑎𝐴(1 − 𝑏𝑎𝐴)

−𝜂

= 𝐴
𝜂−1

(ℎ(𝐴) + 𝑓 (𝐴)�̇�
𝛾

𝐴)
𝑣𝐴(𝑎) (38)

in case (33), and likewise

⟹ 𝑏𝑎𝐴(1 − 𝑏𝑎𝐴)
−𝜂

= 𝐴
𝜂−1

ℎ(𝐴)𝑣𝐴(𝑎) (39)

in case (34). Thus 𝑏
�̂�𝐴

may differ from 𝑏𝑎𝐴 for two reasons: because ̇
�̂�
𝛾

𝐴
> �̇�

𝛾

𝐴
or

because 𝑣𝐴(�̂�) ≠ 𝑣𝐴(𝑎).
Fixing 𝑣𝐴, faster growthmotivates more safety spending in case (33), as is intuitive:

in riskier situations, safety efforts tend to be prioritizedmore highly because (as in (36))
they accomplish more in absolute terms. In case (34), however, speeding growth has
no direct effect on policy: the fact that mitigating risk is more difficult fully offsets the

31As detailed throughout the rest of this section, the existence of a policy response will tend to make
the 𝑋(𝑎) < ∞ case more likely, so that inducing Δ𝑋 < 0 raises 𝑆∞ instead of having no effect.
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fact that there is more risk to mitigate.
Fixing �̇�𝐴, here, unlike in Section 4.2 (Obs. 2), faster growth after 𝐴 has an am-

biguous effect on 𝑣𝐴. This is because here, when growth is faster, it is more costly
to achieve a given degree of safety. In the extreme, if 𝛾 > 1, a catastrophe at 𝐴 is
guaranteed as �̇�𝐴 → ∞ for any 𝐵 < 1 (even if 𝐵 = 1, in case (34)). For moderate
accelerations, however, the 𝑣𝐴(�̂�) > 𝑣𝐴(𝑎) case, in which the planner prefers (at least
marginally) faster growth, is presumably the empirically relevant one. Governments
generally subsidize R&D rather than tax it.

5 Conclusion

Technologies can pose or mitigate existential risks. Stagnation is safe, as assumed in
existing literature, only if the current technology state poses no such risks. Other-
wise, for any fixed direction of technological development, safety requires growth,
and perhaps rapid growth. The conventional wisdom that slower is safer holds only if
policy frictions, or risks posed directly by the process of technological development,
are sufficiently severe.

State risk Transition risk

Alone
Frictionless

policy Alone With state risk
With state risk;
due to frictions

↑ 𝐴 ⟹ ↓↓ 𝛿 ∞ ∞ 𝛾 < 1 ∞ ∞ ∞

↑ 𝐴 ⟹̸ ↓↓ 𝛿;
strict policy

effective
+ desirable

any ∞ 𝛾 = 1 any ∞ ∞

↑ 𝐴 ⟹̸ ↓↓ 𝛿;
strict policy
ineffective

or desirable

any any 𝛾 > 1 0 finite
typically
faster than

←

Table 2: Summary of risk-minimizing growth rates

We omit the “accrued state risk” case of Section 2.3, as it behaves largely like simple state risk, and the
“Transition risk” table omits cases in which survival is impossible. Recall that in the cases with both
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risk types and 𝛾 > 1, the risk-minimizing growth rate may rise to ∞ or fall to 0, depending on how the
relative contributions of state and transition risk evolve.

Even if technological development to date has raised the hazard rate on balance,
and will do so in the immediate future, the tendency for safety to be a luxury good
suggests that x-risk is likely to exhibit a Kuznets curve. That is, we may indeed be
in Sagan’s (1997) “time of perils” (see Appendix A). If so, securing safety today comes
with a massive long-term benefit. Even putting aside the consumption benefits of
faster growth, however, the safety benefit of slower (and thus perhaps less disrup-
tive or better regulated) technological development trades off directly against that of
escaping the time of perils more quickly.

This is not an argument against regulating the use of risky technologies. Indeed,
a primary channel through which technological development can lower cumulative
risk is by hastening the day when regulation is strict. Some recent reactions to calls
for heavy AI regulation, e.g. that of Andreessen (2023), might be read as expressing
the view that our “safety share” should never be very high. If that is so, it is not for
reasons presented in this paper.

Our framework highlights that for those interested in reducing cumulative ex-
istential risk, quantifying the relative contributions of state and transition risk, and
forecasting how these will evolve, would be valuable. A more precise understanding
of the policy distortions around the regulation of risky technologies would be partic-
ularly valuable, both for determining whether they are severe enough to contribute
significantly to transition risk and for determining how responsive policy is likely to
be in the event that the hazard rate sharply rises. Slower growth may well be safer. For
now, however, our results suggest that even those exclusively concerned with long-
term survival should often encourage technological advances despite their short-term
hazards, and advocate risk-reduction measures today only when they are sufficiently
targeted and the costs to broad-based technological progress are sufficiently small.
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A Why focus on survival?

When making tradeoffs over time, it is uncontroversial to discount later periods for
reasons of uncertainty. Whether to include a rate of pure time preference in the
social welfare function as well—even across long time horizons involving multiple
generations—has been a matter of disagreement at least since the objections of Harrod
(1948, p. 40), Koopmans (1963), and Solow (1974). This question is especially central
to the debate over optimal climate policy: Nordhaus (2007) prominently argues that
pure time preference should be included, Stern (2007) that it should not.

Bostrom (2003) argues that with no pure time preference, welfare-maximizing pol-
icy is, to a close approximation, whateverminimizes existential risk. We here formalize
his argument by providing simple conditions under which the approximation holds.

Notation. We build on the notation of Section 2. Let
•  denote the space of technology states and 𝐴 denote a generic technology state;

• 𝑎, with 𝑎𝑡 ∈  for 𝑡 ∈ [0,∞), denote a technology path; and

• 𝑆𝑡(𝑎) for 𝑡 ∈ [0,∞] denote the probability that no anthropogenic existential
catastrophe has occurred by 𝑡 given technology path 𝑎.

A technology state is a description of the state of human civilization fine-grained
enough that (i) the survival curve {𝑆𝑡} depends only on the technology path and (ii)
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flow utility at time 𝑡 depends only on the technology state, i.e. 𝑢𝑡 = 𝑢(𝐴𝑡). Call a
technology path 𝑎 continuous if 𝑢(𝑎𝑡) is continuous in 𝑡.

Suppose that at some (known or unknown) time 𝑇 , an exogenous natural event
will occur which will unavoidably end human civilization if it has not ended already,
such as the death of the sun or the heat death of the universe. Discounting only for
uncertainty, the expected utility of the future given continuous technology path 𝑎 and
exogenous end-time 𝑇 equals

𝑈 (𝑎, 𝑇 ) ≡
∫

𝑇

0

𝑆𝑡(𝑎)𝑢(𝑎𝑡)𝑑𝑡. (40)

Result. A pair of continuous technology paths 𝑎, �̂� are asymptotically utility-
equivalent if

lim
𝑡→∞

𝑢(�̂�𝑡)

𝑢(𝑎𝑡)

= 1 (41)

and, for some 𝑡, 𝑢(𝑎𝑡) is bounded above 0 across 𝑡 > 𝑡.32

For example, suppose lim𝑡→∞ 𝑢(𝑎𝑡) = lim𝑡→∞ 𝑢(�̂�𝑡) = �̄� > 0. Perhaps on both
paths, the population is constant, consumption per person grows without bound, and
flow utility in consumption is bounded above by �̄�. Then

lim
𝑡→∞

𝑢(�̂�𝑡)

𝑢(𝑎𝑡)

=

�̄�

�̄�

= 1.

Throughout Section 4—the only section in which utility appears at all—accelerations
from 𝑎 to �̂� are always asymptotically utility-equivalent for this reason.33

Alternatively, suppose that on either path, individual flow utility approaches the
same limit �̄�, and population eventually grows cubically as we expand into space at
some maximum feasible speed; but expansion begins one period earlier on �̂� than on

32Prop. 5 also holds if 𝑢(𝑎𝑡) is asymptotically bounded below zero. In this case the implication is
that all that matters in the long run is to increase x-risk.

33This is because when 𝜂 > 1, �̄� =
1

𝜂−1
. Note that in the 𝜂 = 1 (logarithmic) case, flow utility grows

linearly like 𝑔𝑡 if consumption grows exponentially at rate 𝑔 , so an acceleration from 𝑎 to �̂� is still
asymptotically utility-equivalent, by lim𝑡→∞

𝑔(𝑡+𝑘)

𝑔𝑡
= 1 ∀𝑘.
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𝑎. Then
lim
𝑡→∞

𝑢(�̂�𝑡)

𝑢(𝑎𝑡)

= lim
𝑡→∞

(𝑡 + 1)
3
�̄�

𝑡
3
�̄�

= 1.

Proposition 5 (Only survival matters).
If continuous technology paths 𝑎, �̂� are asymptotically utility-equivalent and 𝑆∞(𝑎) > 0,

lim

𝑇→∞

𝑈 (�̂�, 𝑇 )

𝑈 (𝑎, 𝑇 )

=

𝑆∞(�̂�)

𝑆∞(𝑎)

.

Proof. Since 𝑢(𝑎𝑡) is continuous and asymptotically bounded above zero,
lim𝑇→∞(𝑎, 𝑇 ) = ∞ or −∞. By (41), if lim𝑇→∞(𝑎, 𝑇 ) < ∞, we must have 𝑆∞(�̂�) = 0, so
the proposition follows immediately. If lim𝑇→∞(𝑎, 𝑇 ) = ∞, by L’Hôpital’s Rule and the
fundamental theorem of calculus the limit equals lim𝑇→∞[𝑆𝑇 (�̂�)𝑢(�̂�𝑇 )]/[𝑆𝑇 (𝑎)𝑢(𝑎𝑇 )].
𝑆∞(�̂�) is defined by the monotone convergence theorem, and the proposition follows
by (41).

The time of perils. This result is only relevant if 𝑇 is high enough that, for any
pair of paths that might reasonably be under consideration, 𝑈 (�̂�, 𝑇 )/𝑈 (𝑎, 𝑇 ) is near
its limit. This seems likely for the following reasons.

From very-long-run historical data on large-scale natural catastrophes, and the
typical survival rate of other mammal species, Snyder-Beattie et al. (2019) estimate
that the hazard rate from natural x-risk is below one in 870,000 per year. Insofar as
we, unlike other species, will develop technological solutions to some natural x-risks,
we should expect 𝑇 to be even greater than 870,000.

Karnofsky (2021), building on Hanson (2009), offers an intuitive case that techno-
logical development in a welfare-relevant sense cannot continue at anything close to
its current pace for over 10,000 more years. This suggests that a very long-term fail-
ure to achieve our potential, flow utility must stagnate (or at best grow cubically; see
above) well before a natural catastrophe’s expected arrival date.

Finally, to maintain that on a path 𝑎 we can roughly apply the discount factor
𝑆∞(𝑎) to the entire interval [0, 𝑇 ], we must argue that (i) 𝑆𝑇 (𝑎) is non-negligible and
(ii) 𝑆𝑡(𝑎) approaches its limit well before 𝑇 . That is, we must argue that on the tech-
nology paths under consideration, humanity may not destroy itself, but if it does, it
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will probably do so within the next, say, few thousand years. Parfit (1984) called this
the view that we live at the “hinge of history”, and Sagan (1997) the “time of perils”. As
both recognized, and as Thorstad (2022) emphasizes, this hypothesis underlies the case
for taking survival to be approximately all that matters in our present circumstances.
The “existential risk Kuznets curve” we find in Section 4 supports the hypothesis.

B Proofs

B.1 Proof of Observation 2

Suppose �̂�𝑡 > 𝑎𝑡 for all 𝑡 ≥ 0, with strict inequality for some 𝑡. Define 𝑏 as in (19),
observing that

𝑏𝑡 = 1 −

𝑎𝑡

�̂�𝑡

(1 − 𝑏𝑎𝑡) ∈ [𝑏𝑎𝑡 , 1],

𝑢(�̂�𝑡(1 − 𝑏𝑡)) = 𝑢(𝑎𝑡(1 − 𝑏𝑎𝑡)) ≡ 𝑢𝑡 .

Then

𝑣0(�̂�, 𝑏) − 𝑣0(𝑎, 𝑏𝑎) = ∫

∞

0

𝑒
−𝜌𝑡

(𝑆𝑡(�̂�, 𝑏) − 𝑆𝑡(𝑎, 𝑏𝑎))𝑢𝑡𝑑𝑡

=
∫

∞

0

ℎ(𝑡)𝑓 (𝑡)𝑑𝑡; (42)

ℎ(𝑡) ≡
(

𝑆𝑡(�̂�, 𝑏)

𝑆𝑡(𝑎, 𝑏𝑎)

− 1
)
, 𝑓 (𝑡) ≡ 𝑒

−𝜌𝑡
𝑆𝑡(𝑎, 𝑏𝑎)𝑢𝑡 .

Because by D3 and (19)

𝛿𝑡(�̂�, 𝑏) ≤ 𝛿𝑡(𝑎, 𝑏𝑎), (43)

by (1) we have

ℎ(0) = 0, ℎ
′
(𝑡) ≥ 0. (44)
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By Obs. 1,

𝐹(𝑡) ≡
∫

∞

𝑡

𝑓 (𝜏)𝑑𝜏 > 0. (45)

Integrating (42) by parts, and observing that 𝑓 (𝑡) = −𝐹
′
(𝑡), we have

𝑣0(�̂�, 𝑏) − 𝑣0(𝑎, 𝑏𝑎) = [ − 𝐹(𝑡)ℎ(𝑡)]

∞

0
+
∫

∞

0

𝐹(𝑡)ℎ
′
(𝑡)𝑑𝑡. (46)

By (44) and (45), the last term is non-negative. By (44), −𝐹(0)ℎ(0) = 0. Finally

lim
𝑡→∞

−𝐹(𝑡)ℎ(𝑡)

= lim
𝑡→∞

(𝑆𝑡(𝑎, 𝑏𝑎) − 𝑆𝑡(�̂�, 𝑏)) ∫

∞

𝑡

𝑒
−𝜌𝑡

𝑆𝜏(𝑎, 𝑏𝑎)𝑢𝜏𝑑𝜏.

Since (i) the term outside the integral lies between 0 and 1 in absolute value, (ii)
𝑆𝜏(𝑎, 𝑏𝑎) ≤ 1, and (iii) 𝑢𝜏 <

1

𝜂−1
, the limit is zero.

Because �̂�𝑡 > 𝑎𝑡 for some 𝑡, the continuity of technology paths implies that the
inequalities of (43) and thus (44) are strict for a positive measure of times. It follows
that the last term of (46) is positive.

The proofs for an initial period greater than 0 are precisely analogous.

B.2 Proof of Proposition 3

Proof of part 1. We will prove that a unique continuous optimal policy path 𝑏𝑎

exists for any technology path 𝑎 that either (i) has a continuous, positive derivative or
(ii) is an acceleration to a path that does.

Necessary and sufficient conditions — The planner’s optimization problem features one
choice variable ̃

𝑏 and one state 𝑆. Expected flow utility at 𝑡 is 𝑆𝑡𝑢(𝑎𝑡
̃
𝑏𝑡) for a 2

function 𝑢(⋅) that is strictly concave and obeys the lower Inada condition. The law of
motion for 𝑆 is −𝑆𝑡𝛿(𝑎𝑡 , 1 − ̃

𝑏𝑡) for a 2 function 𝛿(⋅). Because 𝑎 is independent of ̃𝑏 ,
we may treat it as a function of time.

Letting 𝑣 denote the costate variable on 𝑆, the current value Hamiltonian corre-
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sponding to the problem is

(𝑆𝑡 ,
̃
𝑏𝑡 , 𝑣𝑡 , 𝜇𝑡 , 𝑡) = 𝑆𝑡𝑢(𝑎𝑡

̃
𝑏𝑡) − 𝑣𝑡𝑆𝑡𝛿(𝑎𝑡 , 1 −

̃
𝑏𝑡) + 𝜇𝑡(1 −

̃
𝑏𝑡), (47)

where 𝜇𝑡 is the the Lagrange multiplier on ̃
𝑏𝑡 . We impose ̃

𝑏𝑡 ≤ 1 but not ̃
𝑏𝑡 ≥ 0

because the latter can never bind, by the lower Inada condition on 𝑢(⋅).
Equation (47) satisfies theMangasarian concavity condition that𝑡 is weakly con-

cave in 𝑆𝑡 and ̃
𝑏𝑡 . So applying Caputo (2005), Theorems 14.3-4 and Lemma 14.1,34 given

continuous paths of ̃
𝑏 ∈ [0, 1] and 𝑆 ∈ [0, 1] with 𝑆0 = 1 and �̇�𝑡 = −𝑆𝑡𝛿(𝑎𝑡 ,

̃
𝑏𝑡), we

have that the ̃
𝑏, 𝑆 path is optimal if—and, among continuous paths ̃

𝑏 and 𝑆, only if—for
some semi-differentiable path of 𝑣 and some semi-continuous path of 𝜇 ≥ 0, at all 𝑡
the first-order and transversality conditions are satisfied:

𝜕
𝜕
̃
𝑏𝑡

(𝑆𝑡 ,
̃
𝑏𝑡 , 𝑣𝑡 , 𝜇𝑡 , 𝑡) = 𝜇𝑡

𝜕
𝜕𝜇𝑡

(𝑆𝑡 ,
̃
𝑏𝑡 , 𝑣𝑡 , 𝜇𝑡 , 𝑡) = 0,

𝜕
𝜕𝜇𝑡

(𝑆𝑡 ,
̃
𝑏𝑡 , 𝑣𝑡 , 𝜇𝑡 , 𝑡) ≥ 0, (48)

lim
𝑡→∞

𝑒
−𝜌𝑡

𝑣𝑡 = lim
𝑡→∞

𝑒
−𝜌𝑡

𝑣𝑡𝑆𝑡 = 0. (49)

Given paths 𝑏 , 𝑆 satisfying the above and corresponding paths 𝑣 and 𝜇, 𝑣𝑡 is continuous
and satisfies

�̇�𝑡 = 𝜌𝑣𝑡 −

𝜕
𝜕𝑆𝑡

= 𝜌𝑣𝑡 − 𝑢(𝑎𝑡
̃
𝑏𝑡) − 𝑣𝑡 �̇�𝑡 = (𝜌 + 𝛿(𝑎𝑡 , 1 −

̃
𝑏𝑡))𝑣𝑡 − 𝑢(𝑎𝑡

̃
𝑏𝑡) (50)

except at discontinuity points of ̃𝑏 , where 𝑣’s right and left derivatives may differ.

The first-order condition — Given a continuous path 𝑣, only

̃
𝑏𝑡(𝑣) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

1, 𝑎𝑡𝑢
′
(𝑎𝑡) −

𝜕𝛿

𝜕
̃
𝑏𝑡

(𝑎𝑡 , 0)𝑣𝑡 ≥ 0,

̃
𝑏𝑡 ∶ 𝑎𝑡𝑢

′

(𝑎𝑡(1 −
̃
𝑏𝑡)) −

𝜕𝛿

𝜕
̃
𝑏𝑡

(𝑎𝑡 , 1 −
̃
𝑏𝑡)𝑣𝑡 = 0, otherwise;

(51)

𝜇𝑡(𝑣) = 𝑎𝑡𝑢
′
(𝑎𝑡) −

𝜕𝛿

𝜕
̃
𝑏𝑡

(𝑎𝑡 , 1 −
̃
𝑏𝑡)𝑣𝑡 (52)

satisfy (48) for all 𝑡. The path ̃
𝑏(𝑣) is well-defined by the continuous differentiability of

34Caputo (2005) uses the more general present value notation. Because the control problem at hand
is exponentially discounted, we here use the simpler current value notation.
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𝛿(⋅) in ̃
𝑏𝑡 and the fact that 𝑢(⋅) and 𝛿(⋅) strictly increase in ̃

𝑏𝑡 , with the former strictly
concave and the latter convex. Also, ̃𝑏(𝑣) is right-continuous by the twice continuous
differentiability of 𝑢(⋅) and 𝛿(⋅), the right-continuity of the right derivative of 𝑎, and
the implicit function theorem. The path 𝜇(𝑣) is then also right-continuous by the
composition of continuous functions.

To show that there exists an optimal path, and that only one such path is semi-
continuous, it will now suffice to show that there is a unique path 𝑣 for which (49)–(50)
are satisfied given ̃

𝑏(𝑣) and its implied 𝑆 path, and that ̃𝑏(𝑣) is continuous.

The transversality condition — The solution to differential equation (50) is

𝑣𝑡 = 𝑒
∫
𝑡

0
(𝜌+𝛿𝜏)𝑑𝜏

(
𝑣0 − ∫

𝑡

0

𝑒
− ∫

𝜏

0
(𝜌+𝛿𝑞)𝑑𝑞

𝑢(𝑎𝜏
̃
𝑏𝜏)𝑑𝜏

)
(53)

⟹ 𝑣0 = ∫

𝑡

0

𝑒
−𝜌𝜏

𝑆𝜏𝑢(𝑎𝜏
̃
𝑏𝜏)𝑑𝜏 + 𝑒

−𝜌𝑡
𝑆𝑡𝑣𝑡 . (54)

Since (54) is continuous in 𝑡 (by the boundedness of 𝑢(⋅) and the continuous evolution
of 𝑆) and holds for all 𝑡, 𝑣 satisfies (49)–(50) iff

𝑣0 = ∫

∞

0

𝑒
−𝜌𝑡

𝑆𝑡𝑢(𝑎𝑡
̃
𝑏𝑡)𝑑𝑡. (55)

Given (51), 𝑣𝑡 determines ̃
𝑏𝑡(𝑣) for all 𝑡. Given (50), 𝑣𝑡 and ̃

𝑏𝑡 determine the right
derivative of 𝑣 for all 𝑡. Given 𝑣0, therefore, there is a unique path 𝑣—and thus ̃

𝑏 , and
thus 𝑆—compatible with (50)–(51). We will now show that there is at least one value
of 𝑣0 for which (55) is satisfied, given the corresponding ̃

𝑏 and 𝑆 paths. For such a 𝑣0,
the corresponding variable paths by construction satisfy (48)–(49).

Existence — Let 𝑣(𝑣0) and ̃
𝑏(𝑣0) denote the unique paths of 𝑣 and ̃

𝑏 compatible with
(50)–(51) for which 𝑣0(𝑣0) = 𝑣0. By (53), lim𝑣0→−∞ 𝑣𝑡(𝑣0) = −∞ ∀𝑡 > 0. By (51),
therefore, for each 𝑡 > 0, there is a 𝑣0 such that ̃

𝑏𝑡(𝑣0) = 1 ∀𝑣0 < 𝑣0. Choose 𝜏 > 0

and 𝑣0 low enough that 𝑣𝜏(𝑣0) < 0 and thus ̃
𝑏𝜏(𝑣0) = 1. By (50), because 𝑢(𝑎𝑡 ̃𝑏𝑡) ≥ 0,

̇
𝑣𝑡 < 0. We thus have 𝑣𝑡(𝑣0) < 0, and thus ̃

𝑏𝑡 = 1, for all 𝑡 ≥ 𝜏.
Observe that if 𝑣0 < 𝑣0, 𝑣𝑡(𝑣0) < 𝑣𝑡(𝑣0) for all 𝑡. Otherwise, by the continuity of 𝑣,

there would be a 𝑡 with 𝑣𝑡(𝑣0) = 𝑣𝑡(𝑣0), and integrating (50), with (51) substituted for
̃
𝑏𝑡 , would allow us to identify 𝑣0 = 𝑣0. Thus, if 𝑣0 < 𝑣0, ̃𝑏𝑡(𝑣0) ≥ ̃

𝑏𝑡(𝑣0) ∀𝑡. It follows
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that some 𝑣
0
is less than (55) at ̃𝑏 =

̃
𝑏(𝑣

0
).

Because (55) is upper-bounded (Obs. 3), some 𝑣0 exceeds (55) at ̃𝑏 =
̃
𝑏(𝑣0).

By (51) and the implicit function theorem, ̃𝑏𝑡 is continuous in 𝑣𝑡 for all 𝑡. (50) then
implies that �̇�𝑡 is defined and continuous in 𝑣𝑡 for all 𝑡, and thus that 𝑣𝑡(𝑣0), then 𝑥𝑡(𝑣0),
and then the right-hand side of (55) are continuous in 𝑣0 for all 𝑡. It follows from the
intermediate value theorem that (55) holds for some 𝑣0 ∈ (𝑣

0
, 𝑣0).

Uniqueness — The uniqueness condition of Caputo (2005), Thm. 14.4 does not directly
apply because the Hamiltonian is linear, not strictly concave, in 𝑆. This can be reme-
died by defining the state variable as e.g. 𝑆2 without affecting any other results.

Uniqueness (among continuous ̃
𝑏 paths) also follows from the facts that a path is

optimal iff 𝑣0 attains its maximum feasible value and that, given (48)–(49), 𝑣0 deter-
mines a unique path for every variable.

Proof of part 2. By first-order condition (20), on 𝑏 = 𝑏𝑎 we have

(𝑎𝑡(1 − 𝑏𝑡))

1−𝜂 (56)

≥
[
−

𝜕

𝜕𝑏𝑡

𝛿(𝑎𝑡 , 𝑏𝑡)
]
(1 − 𝑏𝑡)𝑣𝑡 . (57)

Fast “𝑎” case — If lim
𝑝→1

+ �̄�(𝑝) > 0, there is a 𝑝 > 1 with lim𝑡→∞ 𝑎𝑡𝑡
−

𝑘

𝜂−1
> 0 for

𝑘 < 𝑝. For such 𝑘, define 𝑏
𝑘
and the corresponding consumption path 𝑎(1 − 𝑏

𝑘
) by

𝑏
𝑘𝑡

= 1 − 𝑡

𝑘

𝜂−1

/𝑎𝑡 ,

𝑎𝑡(1 − 𝑏
𝑘𝑡
) = 𝑡

𝑘

𝜂−1
. (58)

a. If lim
𝑘→1

+ 𝐷(𝑘) = 0, then for some 𝑘 ∈ (1, 𝑝), for any 𝜅 > 0, 𝑏𝑎𝑡 < 𝑣𝑏
𝑘𝑡

for large 𝑡.
Choose 𝜅 = 𝑣 (Obs. 3). Given that 𝑎𝑡(1 − 𝑏𝑎𝑡) is lower-bounded in the limit by 𝑣 ⋅ (58),
(56) is upper-bounded in the limit by 𝑡

−𝑘
/𝑣 on 𝑏 = 𝑏𝑎. By D1, 𝛿 is concave in 𝐵 and

thus in �̃�, and 𝛿(⋅, 1) = 0. So for large 𝑡 we have

1

𝑣𝑡(𝑎)

𝑡
−𝑘

>
[
−

𝜕

𝜕𝑏𝑎𝑡

𝛿(𝑎𝑡 , 𝑏𝑎𝑡)
]
(1 − 𝑏𝑎𝑡) ≡

[

𝜕

𝜕
̃
𝑏𝑎𝑡

𝛿(𝑎𝑡 , 1 −
̃
𝑏𝑎𝑡)

]

̃
𝑏𝑎𝑡 ≥ 𝛿𝑡(𝑎). (59)

Thus the integral 𝑋(𝑎) is finite and 𝑆∞(𝑎) > 0.
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b. If 𝐷(1) > 0, 𝑎𝑡(1 − 𝑏𝑎𝑡) is upper-bounded in the limit by 𝜅𝑡

1

𝜂−1 for some 𝜅 > 0.
Thus 𝑏𝑎 is interior, and (56–57) holds with equality on 𝑏 = 𝑏𝑎, with both sides lower-
bounded in the limit by 𝜅𝑡

−1. Because for any 𝑏

𝛽(𝑎𝑡 , 𝑏𝑡)𝛿(𝑎𝑡 , 𝑏𝑡) =
[
−

𝜕

𝜕𝑏𝑡

𝛿(𝑎𝑡 , 𝑏𝑡)
]
(1 − 𝑏𝑡), (60)

upper-boundedness of 𝛽(⋅) implies that 𝜅𝑡−1 lower-bounds 𝛿𝑡(𝑎) as well.

Slow “a” case — Suppose �̄�(1) = 0.

a. If lim
𝑘→1

+ 𝐷(𝑘) = 0, then for some 𝑘 > 1, 𝑡−𝑘/𝑣 upper-bounds 𝛿𝑡(𝑎, 0) as in (59)
(with 0 in place of 𝑏𝑎). Because 𝛿(⋅) decreases in 𝐵, the bound also applies to 𝛿𝑡(𝑎).

b. If 𝐷(1) > 0 and 𝛽(⋅) ≤
̄
𝛽, then there is a 𝑇0 and 𝜅0 > 0 such that, for all 𝑡 > 𝑇0

with 𝑏𝑎𝑡 = 0,
−

𝜕𝛿

𝜕𝑏𝑎𝑡

(𝑎𝑡 , 0) > 𝜅0/𝑡.

Because (60) holds for all 𝑏 and all 𝑡, we have 𝛿𝑡(𝑎) ≥ (𝜅0/
̄
𝛽)/𝑡 for all 𝑡 > 𝑇0 with

𝑏𝑎𝑡 = 0. For 𝑡 with 𝑏𝑎𝑡 > 0, optimality requires (56)=(57). So, in conjunction with (60),

𝛿𝑡(𝑎) > 𝑎
1−𝜂

𝑡 /
̄
𝛽.

By �̄�(1) = 0, there is a 𝑇1 and 𝜅1 > 0 such that for all 𝑡 > 𝑇1 with 𝑏𝑎𝑡 > 0, 𝛿𝑡(𝑎) >
(𝜅1/

̄
𝛽)/𝑡.

C Transition dynamics for simulations

For simulating the transition dynamics, it is helpful to find ̇
̃
𝑏𝑎𝑡 and ̇

𝛿𝑡(𝑎) as functions
of 𝑡 and ̃

𝑏𝑎𝑡 in the regime where ̃
𝑏𝑎𝑡 is interior. Since hazard function (21) is the special

case of (31) with 𝜖 = 1, the calculations below apply to all simulations. For simplicity
we will drop the “𝑎” arguments and subscripts.
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FOC:

𝜕

𝜕𝑏𝑡

𝑢(𝑎𝑡(1 − 𝑏𝑡)) =

𝜕

𝜕𝑏𝑡

𝛿(𝑎𝑡 , 𝑏𝑡)𝑣𝑡

⟹ 𝑎
1−𝜂

𝑡

̃
𝑏
−𝜂

𝑡
=

̄
𝛿𝑎

𝛼

𝑡

̃
𝑏
𝛽−1

𝑡 (
𝛽(1 − (1 −

̃
𝑏𝑡)

𝜖

) + 𝜖
̃
𝑏𝑡(1 −

̃
𝑏𝑡)

𝜖−1

)
𝑣𝑡 .

Rearranging and differentiating gives

𝑣𝑡 =

1

̄
𝛿

𝑎
1−𝜂−𝛼

𝑡

̃
𝑏
1−𝜂−𝛽

𝑡

𝛽(1 − (1 −
̃
𝑏𝑡)

𝜖
) + 𝜖

̃
𝑏𝑡(1 −

̃
𝑏𝑡)

𝜖−1

(61)

⟹ �̇�𝑡 = 𝑣𝑡
(
(1 − 𝜂 − 𝛼)𝑔 + (1 − 𝜂 − 𝛽)

̇
̃
𝑏𝑡/

̃
𝑏𝑡 (62)

− 𝜖

1 + 𝛽 − (𝜖 + 𝛽)
̃
𝑏𝑡

𝛽(1 −
̃
𝑏𝑡)

1−𝜖
− 𝛽 + (𝜖 + 𝛽)

̃
𝑏𝑡

̇
̃
𝑏𝑡

1 −
̃
𝑏𝑡
)
.

From the first-order condition with respect to the state variable 𝑆𝑡 ,

�̇�𝑡 = 𝑣𝑡(𝜌 + 𝛿𝑡) − 𝑢(𝑎𝑡
̃
𝑏𝑡)

= 𝑣𝑡
(
𝜌 +

̄
𝛿𝑎

𝛼

𝑡

̃
𝑏
𝛽

𝑡 (
1 − (1 −

̃
𝑏𝑡)

𝜖

))
−

(𝑎𝑡
̃
𝑏𝑡)

1−𝜂
− 1

1 − 𝜂

. (63)

Substituting (61) into (62) and (63), setting the results equal, and solving for ̇
̃
𝑏𝑡 yields

̇
̃
𝑏𝑡 =

̃
𝑏𝑡(𝛽(1 −

̃
𝑏𝑡)

1−𝜖
− 𝛽 + (𝜖 + 𝛽)

̃
𝑏𝑡)(1 −

̃
𝑏𝑡)

(
(1 − 𝜂 − 𝛽)(𝛽(1 −

̃
𝑏𝑡)

1−𝜖
− 𝛽 + (𝜖 − 𝛽)

̃
𝑏𝑡)(1 −

̃
𝑏𝑡) − 𝜖(𝛽 − (𝜖 + 𝛽)

̃
𝑏𝑡)

̃
𝑏𝑡
)

−1

(
𝜌 +

̄
𝛿𝑎

𝛼

𝑡

̃
𝑏
𝛽

𝑡 (
1 − (1 −

̃
𝑏𝑡)

𝜖

) − 𝑔(1 − 𝛼 − 𝜂)− (64)

(𝑎𝑡
̃
𝑏𝑡)

1−𝜂
− 1

1 − 𝜂

̄
𝛿𝑎

𝛼+𝜂−1

𝑡

̃
𝑏
𝛽+𝜂−1

𝑡 (𝛽(1 − (1 −
̃
𝑏𝑡)

𝜖

) + 𝜖
̃
𝑏𝑡(1 −

̃
𝑏𝑡)

𝜖−1

))
.

Differentiating the hazard function (31) with respect to 𝑡 yields

̇
𝛿𝑡 =

̄
𝛿𝑎

𝛼

𝑡

̃
𝑏
𝛽

𝑡 (
1 − (1 −

̃
𝑏𝑡)

𝜖

)(
𝛼𝑔 + 𝛽

̇
̃
𝑏𝑡

̃
𝑏𝑡

+ 𝜖

(1 −
̃
𝑏𝑡)

𝜖

1 − (1 −
̃
𝑏𝑡)

𝜖

̇
̃
𝑏𝑡

1 −
̃
𝑏𝑡
)
. (65)

Scripts for replicating Figures 2 and 3 using (64) and (65), and the estimate of 𝑆∞ fol-
lowing Figure 2, are provided here: https://philiptrammell.com/static/ERAG_code.zip.

https://philiptrammell.com/static/ERAG_code.zip
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