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Abstract

Technology increases consumption but can create or mitigate “existen-
tial risk” to human civilization. In a model of endogenous technology
regulation, the willingness to sacrifice consumption for safety grows
as the value of life rises and the marginal utility of consumption falls.
As a result, in a broad class of cases, when technology is optimally
regulated, existential risk follows a Kuznets-style inverted U-shape.
This suggests an economic foundation for the prominent view that we
are living through a once-in-history “time of perils”. Though accel-
erating technological development during such a period may initially
increase risk, it typically decreases cumulative risk in the long run.
When technology is regulated optimally, therefore, there is typically
no tradeoff between technological progress and the probability of ex-
istential catastrophe.
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“If you are going through hell, keep going.”
–Winston Churchill

1 Introduction

Technological progress can bring immense prosperity. Its impact on existen-
tial risk—the risk of human extinction, or, equivalently for decision purposes,
of an equally complete and permanent destruction of human welfare—strikes
many as more ambiguous (Bostrom (2002), Posner (2004), Farquhar et al.
(2017), Ord (2020), Jones (2023)). Advances in vaccine technology render
us less vulnerable to humanity-destroying plagues, for instance; advances
in gain-of-function virology arguably make them more likely (Millett and
Snyder-Beattie, 2017).

If some existential risks are a permanent byproduct of technologically
advanced civilization, an eventual existential catastrophe is inevitable. Civi-
lization will avoid destroying itself technologically only if it pursues a policy
of “degrowth”: self-destruction by another name.

On the other hand, if, absent a near-term existential catastrophe, we
can eventually achieve both advancement and stability, then a near-term
existential catastrophe destroys a future that might otherwise have been
very valuable and very long. The intuition that we are living through a
“time of perils”—a temporary period of high existential risk—was perhaps
most famously expressed by Sagan (1997), who coined the phrase, and the
prodigious implications for those especially concerned about the long-term
future were emphasized early by Parfit (1984) and more recently by Ord
(2020). If we are living through a time of perils, risky growth today might
buy a short-run increase to human welfare at a severe long-run cost.

This raises the possibility of a tradeoff: concern for the long-run survival
of human civilization may motivate slowing or abandoning development, at
least outside of sustainability-focused domains such as green energy technol-
ogy. Sentiments along these lines from an environmentalist perspective go
back most notably to the Club of Rome’s 1972 report calling for a recognition
of the “Limits to Growth”, and have recently reemerged with prominent calls
to pause AI development (Future of Life Institute, 2023). Jones (2023) ex-
plores how to make the tradeoff between AI development and AI risk, under
the assumption that such a tradeoff exists.

Is this assumption justified? Would slowing technological development
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lower existential risk?

We shed light on this question by developing a dynamic model of the tradeoff
between consumption and existential safety.

We begin in Section 2 by introducing an economic environment in which
the technological frontier grows exogenously and the hazard rate—the flow
probability of an existential catastrophe—is an especially simple function
of the technology level and policy choices. As new potentially dangerous
technologies are introduced, a planner, discounting the future at a positive
rate, decides how much potential consumption to sacrifice for the sake of
lowering the hazard rate.

In Section 3 we find that, in the specified environment, the chosen policy
path generates an “existential risk Kuznets curve”. That is, the hazard rate
rises and then falls with time. Early in time, when the expected discounted
value of the future of civilization is relatively low and the marginal utility
of consumption is high, it is worthwhile to adopt risky technologies as they
arrive, tolerating increases to the hazard rate for the sake of growing con-
sumption rapidly. Later, when the expected value of the future is higher and
the marginal utility of consumption has fallen, substantial risk mitigation
becomes worthwhile.

This insight mirrors the logic of Stokey (1998) and Brock and Taylor
(2005), on which environmental damages rise and then fall with economic
development, and of Jones (2016), on which growth yields increases in the
value of life relative to marginal consumption. It appears briefly in Cotton-
Barratt (2015), who notes that efforts to reduce existential risk today may be
more valuable than efforts to do so in the future, because safety efforts will
be better funded “in a wealthier world”. This dynamic provides a natural
economic foundation for the view that we may indeed be living through a
once-in-history time of perils. Under the simple functional forms of Sections
2–3 for growth, preferences, and risk, the hazard rate ultimately falls toward
zero quickly enough that the probability of escaping the time of perils is
positive.

Our model of catastrophic risk differs importantly from those of Martin
and Pindyck (2015, 2021) and Aurland-Bredesen (2019). That literature
studies a society’s willingness to pay to reduce the risk of catastrophes that
are, or are essentially equivalent to, proportional consumption cuts. In such
a context there are no wealth effects: the fraction of consumption one is
willing to sacrifice to avoid a proportional consumption cut is, by definition,



3

independent of one’s baseline level of consumption. As emphasized by
Jones (2016), and as noted above, reductions in risks to life are luxury
goods, given standard preferences: as consumption rises, the marginal
utility of risk-reduction rises, whereas the marginal utility offered by other
consumption goods falls. Wealth effects therefore play a central role in the
existential-risk-focused model studied here.

Section 4 details the implications of the model for the impact of a shock to
technology growth on existential risk. The impact of a temporary increase to
the technology level is intuitive. Early in time, when technological progress is
associated with increases to the hazard rate, temporarily advancing the tech-
nological frontier raises risk; late in time, doing so lowers risk. Importantly,
however, the effect of a permanent level or growth effect is always to speed
civilization through the time of perils. Though such effects may temporarily
raise the hazard rate, therefore, they ultimately lower it enough to lower the
cumulative probability of a catastrophe.

In short, while the intuition of a time of perils may have a compelling
economic foundation, it is a foundation that largely undermines the case for
slowing technological development out of concern for long-run safety. For ac-
celerating technological development to increase cumulative risk there must
be a sufficiently severe and lasting regulatory inefficiency, not merely insuf-
ficient concern by regulators for the long-run future.

This analysis might be compared with that of Baranzini and Bourguinion
(1995). In a model in which growth can pose existential risk, Baranzini and
Bourguinion define a growth path to be “sustainable” if it (a) minimizes
the probability that an anthropogenic existential catastrophe ever occurs
and (b) features non-decreasing consumption given survival. They then find
conditions under which the optimal growth path, in the conventional sense
of maximizing expected discounted utility, is sustainable. We do something
like the reverse: we find conditions under which technological advances, when
regulated with a view to maximizing expected discounted utility, lower the
probability of an anthropogenic existential catastrophe.

The two central ingredients of the model of Sections 2–4 are the tech-
nology growth path and the model of the hazard rate. In Sections 5 and 6,
we test the robustness of the conclusions above by generalizing both, finding
simple conditions that are sufficient for accelerations to technology growth
to increase safety in the long run. We find that sustained growth is compat-
ible with long-term survival under some arguably plausible assumptions and
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incompatible under others. However, we also find that when an efficiently
regulated path does allow for survival, the central lessons of Section 4 about
the negative relationship between growth and existential risk are typically
maintained.

Section 7 concludes by discussing the limitations of this analysis and the
value of further research on the relationship between existential risk and
growth.

2 The economic environment

2.1 Technology

The maximum feasible level of consumption at t equals the technology level
At. Actual consumption is At multiplied by a policy choice xt ∈ [0, 1]:

Ct = Atxt. (1)

The tradeoff at the heart of this paper is that a technologically advanced
civilization can risk self-destruction, and that this risk can be lowered at
some cost to consumption, as represented here by a choice of x below 1. (We
denote the choice variable x to remind the reader that higher choices of x
come with higher existential risk.) Choices of x below 1 may constitute bans
on the adoption of consumption-increasing but risky production processes,
and/or allocations of resources to the production of safety goods and services,
like pandemic monitoring. The relationship we assume between A, x, and
the degree of existential risk, in the baseline model, is given below.

The technology frontier A grows at a positive, exogenous, constant expo-
nential rate g:

Ȧt = Atg, g > 0, A0 > 0.

Alternative growth paths are explored in Section 5.

2.2 Hazard rate

A time-varying hazard rate δt represents the flow probability of anthropogenic
existential catastrophe. δt is a function of the technology level At and the
policy choice xt, and is increasing in xt. For now, we will assume that the
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elasticities of the hazard rate in A and in x are constant, so that the hazard
function equals

δ(At, xt) = δ̄Aα
t x

β
t , δ̄ > 0, β > α > 0, β > 1. (2)

We impose β > α > 0 and β > 1 to satisfy three desiderata.1

The first is that, fixing xt > 0, δt increase in At. In the context of haz-
ard function (2), this of course requires that α > 0. The assumption that δt
increases in At is necessary if we are to concede the assessment that the devel-
opment of hazardous technologies has rendered an anthropogenic existential
catastrophe more likely now than it was centuries ago. The proportion 1−x
of potential consumption sacrificed for the sake of existential safety has only
increased alongside technological development: having once been zero, it is
a small but positive share today.2 If it had remained fixed, the hazard rate
would presumably have followed a weakly higher path.

Second, the elasticity of δt with respect to xt is assumed to exceed the
elasticity of δt with respect to At; i.e., β > α. This is equivalent to the
condition that, when technology advances, it is always feasible to lower the
risk level by retaining the former consumption level, allocating all marginal
productive capacity to existential safety measures. This may be seen by
substituting xt = Ct/At (from (1)) into the hazard function (2), yielding

δt = δ̄Aα−β
t Cβ

t .

Fixing C, the hazard rate falls over time iff β > α. If it is (indefinitely)
infeasible to lower the hazard rate while fixing consumption, as it is in this

1Hazard function (2) is closely analogous to the environmental damage function of
Stokey (1998). While Stokey focuses on the implications of the damage function for the
chosen path of x (or “z” in her notation), we will study how accelerations to the path of
A affect the probability of a binary event: the occurrence of an anthropogenic existential
catastrophe at any time.

2Ord (2020, p. 313) estimates that, as of 2020, approximately $100 million per year
was spent specifically on reducing existential risk. This is likely to be a considerable un-
derestimate of existential safety expenditures in the sense relevant here, for two reasons.
First, explicit expenditures do not include foregone consumption due to regulations that
slow the development or deployment of risky technologies. Second, many efforts in e.g.
nuclear non-proliferation, climate change mitigation, biosecurity, and AI safety are moti-
vated by the desire to reduce existential risks alongside the desire to reduce damages at a
smaller scale. By contrast, Moynihan (2020) argues that the very concept of an anthro-
pogenic existential catastrophe essentially did not exist 300 years ago. To the best of our
understanding, there were at that time no efforts at all taken with a view to preventing
one.
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model if β ≤ α, then an existential catastrophe is unavoidable except through
indefinite degrowth, with consumption falling to zero. This immiseration
would amount to the destruction of advanced civilization by other means.
In the β ≤ α scenario, therefore, speeding or slowing growth can have no
impact on the probability of an existential catastrophe broadly construed.

Third, fixing At > 0, δt is assumed to be strictly convex in xt. This
imposes β > 1. The convexity implies diminishing returns to existential risk
mitigation efforts.

The implications of generalizing the hazard function are discussed in
Sections 5 and 6.

The probability that civilization survives to date t (starting from date 0) is
given by

St ≡ e−
∫ t
0 δsds,

so that it corresponds to the laws of motion

Ṡt = −δtSt, S0 = 1.

The probability that human civilization does not succumb to an anthro-
pogenic existential catastrophe and, at least in expectation, enjoys a long
and flourishing future3 is

S∞ ≡ lim
t→∞

St = e−
∫∞
0 δsds. (3)

Note that S∞ > 0 iff
∫∞
0

δsds is bounded.

2.3 Preferences

The population is fixed. The expected utility of a representative agent is∫ ∞

0

e−ρtSt u(Ct) dt, (4)

3In the face of natural existential risk, this will entail eventually succumbing to a
natural existential catastrophe instead. From very-long-run historical data on large-scale
natural catastrophes, and the typical survival rate of other mammalian species, Snyder-
Beattie et al. (2019) estimate that humanity’s natural existential hazard rate is “almost
guaranteed to be less than one in 14,000” and “likely below one in 870,000” per year.
Throughout this paper we ignore the possibility that technological advances may mitigate
natural existential risks, but of course accounting for this possibility would only strengthen
the headline results.
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u(Ct) =
C1−γ

t − 1

1− γ
, γ > 1.

That is, flow utility u(·) is CRRA in consumption for some coefficient of
relative risk aversion γ > 1. Flow utility is discounted at exponential rate
ρ > 0, representing the sum of some rate of pure time preference, if any, and
some rate of natural and unavoidable existential risk.

The utility of death is implicitly normalized to 0 and the death-equivalent
consumption level to 1. Equivalently, we are normalizing to 1 the technology
level at which, when consumption is maximized, flow utility equals 0.

A planner chooses the path of x to maximize (4) subject to (1)–(2).

Like Martin and Pindyck (2015, 2021), we impose the assumption that γ > 1
throughout the paper (except in Section 3.4). We do this in part because this
appears to the empirically relevant case, as documented by Hall (1988), Lucas
(1994), Chetty (2006), and others. More importantly, however, we focus on
the γ > 1 case because the results are otherwise relatively uninteresting.
This is for two reasons.

First, observe that when γ > 1, flow utility is upper-bounded by 1
γ−1

> 0.
Accelerating consumption growth, from a baseline of positive consumption
growth, therefore yields a stream of utility benefits that eventually shrinks
over time. This dynamic produces the tradeoff that motivates the paper:
concern for the future may cast doubt on the value of speeding technological
development, because the consumption benefits of doing so primarily accrue
in the short run, whereas the costs of an existential catastrophe are everlast-
ing. By contrast, when γ ≤ 1, flow utility grows in consumption without
bound, so accelerations to consumption growth and reductions in existential
risk can have comparable long-run benefits.

Second and relatedly, when γ ≤ 1, the marginal utility of consumption
does not decline quickly enough (relative to the rising value of civilization) to
motivate rapid increases in consumption sacrifices for the sake of safety. As
a result, the probability of long-term survival is always zero on the planner’s
chosen path, and accelerations or decelerations to technological development
have no impact on the probability. This is detailed in Section 3.4.
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3 The existential risk Kuznets curve

3.1 Optimality

Summarizing the environment of Section 2, the planner’s problem is to choose
{xt}∞t=0 to maximize ∫ ∞

0

e−ρtSt u(Ct) dt, (5)

u(Ct) ≡
C1−γ

t − 1

1− γ
, γ > 1 (6)

subject to

A0 > 0,

Ȧt = gAt (g > 0),

Ct = Atxt,

S0 = 1,

Ṡt = −δtSt,

δt = δ̄Aα
t x

β
t (δ̄ > 0, β > α > 0, β > 1). (7)

This section finds the path of the hazard rate in the planner-optimal
solution, observing that it rises and then falls with time. In the subsequent
section we will explore what this implies for the impact of speeding growth
on the probability of an anthropogenic existential catastrophe. From now
on, we will typically refer to such an event simply as a “catastrophe”.

The planner faces one choice variable, xt, and one state variable, St. Her
(expected) flow payoff at t is Stu(Ct). Her problem can be represented by
the following current-value Hamiltonian:

Ht = Stu(Ct) + vtṠt

= St
(Atxt)

1−γ − 1

1− γ
− vt δ̄A

α
t x

β
t St, (8)

where

vt =

∫ ∞

t

e−ρ(s−t)Ss

St

u(Cs)ds (9)
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is the costate variable on survival: the expected value of the future of civi-
lization at t, conditional on survival to t.4

On an optimal path, the first-order condition on (8) with respect to the
choice variable xt is satisfied. Differentiating (8) with respect to xt, we have

StA
1−γ
t x−γ

t − δ̄Aα
t βx

β−1
t vtSt ≥ 0, (10)

with inequality iff the left-hand side is positive at xt = 1, in which case xt = 1
is optimal.5 Thus,

• As long as (10) is nonnegative at xt = 1, the optimal choice of xt ∈ [0, 1]
equals 1. Even the first marginal sacrifices of consumption would come
with greater flow costs than expected benefits.

• When (10) is negative at xt = 1, the optimal choice of xt is interior.
It sets (10) equal to zero, maintaining the condition that the marginal
cost to flow utility of lowering consumption equals the expected benefit
via risk reduction.6

In fact there is a unique7 optimal path, characterized by first-order condi-
tion (10), a first-order condition corresponding to the state variable St, and
identity (9). This is shown in Appendix A.1 for the strictly more general
environments of Sections 5 and 6. Throughout this section, however, our
discussion will rely only on the observation that on any optimal path, (10)
must be satisfied and on any feasible path, vt is upper-bounded by

v̄ ≡ 1

ρ(γ − 1)
. (11)

3.2 Initial risk increases

The condition that (10) is nonnegative at xt = 1 is equivalent to the condition
that

A
−(α+γ−1)
t ≥ δ̄βvt. (12)

4The fact that the costate variable on survival must equal (9) can be seen immediately
by reflecting on the fact that, in effect, the value of saving the world must equal the value
of the world; but it is also derived formally in Appendix A.1.

5The second derivative with respect to xt is negative by the assumption that β > 1.
6We can ignore the possibility that the optimal choice of xt equals 0 because such a

choice yields infinite flow disutility.
7Under the restriction of piecewise continuity. If x is optimal, measure-zero deviations

from x are of course also optimal.
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The continuation value of civilization at t given survival to t, vt, always
strictly rises over time. This follows from the fact that, given the optimal
paths {Cs}s≥t and {δs}s≥t achievable at a given initial technology level At,
a higher initial technology level allows for a path with an equal hazard rate
but more consumption at each future period, by the assumption that β > α.
A higher initial technology level always enables the planner to implement a
preferred future.

Therefore, early in time, when At is low, inequality (12) is satisfied. The
optimal policy choice is x = 1, and the hazard rate rises with A at rate
αg. We will assume that time 0 is defined to be early enough in time that
inequality (12) is satisfied strictly at t = 0.

3.3 Eventual risk declines and survival

As the left-hand side of (12) falls exponentially with At and the right-hand
side rises, there is a unique time t∗ at which (12) holds with equality. After
t∗, the optimal choice of xt is interior and sets (10) equal to zero.

Setting (10) equal to zero, rearranging, and taking the growth rate of
each side, we can find the growth rate of the policy choice variable:

x1−β−γ
t = δ̄βAα+γ−1

t vt (13)

=⇒ gxt = −α + γ − 1

β + γ − 1
g − 1

β + γ − 1
gvt, (14)

where, given a time-dependent variable y, gyt ≡ ẏt/yt denotes its proportional
growth rate at t.

The hazard rate in turn grows as

gδt = αg + βgxt

= −(β − α)(γ − 1)

β + γ − 1
g − β

β + γ − 1
gvt. (15)

Because β > α and γ > 1, (15) is negative.
Furthermore, though gvt is always positive, gvt → 0. This roughly follows

from the fact that the expected value of the future vt is bounded above by
v̄.8 This gives us the asymptotic long-run negative growth rates gx and gδ.

8The gvt → 0 limit is shown formally in Appendix A.2.
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Finally, since Ct = Atxt, we have

gCt = g + gxt

=
β − α

β + γ − 1
g − 1

β + γ − 1
gvt.

Because β > α, long-run consumption growth is positive: though x
declines to 0, A grows more quickly than x declines. Indeed, the growth of
consumption is key to the growth in sacrifices for the sake of safety. In the
face of decreasing marginal utility to consumption and decreasing marginal
returns to safety effort, potential consumption increases are split between
the former and latter so that the marginal value of each remains equal.

To summarize:

Proposition 1. The existential risk Kuznets curve
On the planner-optimal path defined by (5)–(7), there exists a time t∗ such
that for t ≤ t∗,

xt = 1,

gCt = g > 0,

gδt = αg > 0

and for t > t∗,

lim
t→∞

gxt = −α + γ − 1

β + γ − 1
g < 0, (16)

lim
t→∞

gCt =
β − α

β + γ − 1
g > 0,

lim
t→∞

gδt = −(β − α)(γ − 1)

β + γ − 1
g < 0 (17)

with all three limits approached from below.

Corollary 1.1. Survival
On the planner-optimal path defined by (5)–(7), S∞ > 0.

Proof. The result follows from (17) and the definition of S∞. Because δt
ultimately falls exponentially,

∫∞
0

δtdt < ∞, so S∞ ≡ e−
∫∞
0 δtdt > 0.

Note that δt → 0 is insufficient for survival. If δt fell to 0 too slowly, the
integral would diverge, and we would have S∞ = 0.
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3.4 No survival with γ ≤ 1

As noted in Section 2.3, one reason for focusing on the γ > 1 case is that,
when the marginal utility of consumption declines too slowly, a rapid shift
from consumption to safety effort is not implemented, and the probability of
long-term survival is always zero.

Proposition 2. Policy choice and risk with γ ≤ 1
Suppose a planner faces problem (5)–(7), but with utility function (6) replaced
by

u(Ct) =

{
log(Ct), γ = 1;
C1−γ

t −1

1−γ
, γ < 1

(18)

for some γ ≤ 1, and

ρ > ρ ≡ (β − α)(1− γ)

β
g (19)

to ensure the existence of an optimal policy.
Then there exists a time t∗ such that for t ≤ t∗,

xt = 1,

gCt = g > 0,

gδt = αg > 0

and for t > t∗,

lim
t→∞

gxt = −α

β
g < 0, (20)

lim
t→∞

gCt =
β − α

β
g > 0,

lim
t→∞

δtt =
ρ

(β − α)g
> 0, γ = 1; (21)

δ∗ ≡ lim
t→∞

δt =
(ρ− ρ)(1− γ)

β + γ − 1
> 0, γ < 1. (22)

Proof. See Appendix A.2.

Corollary 2.1. No survival with γ ≤ 1
On the planner-optimal path defined by (5)–(7), with utility function (6) re-
placed by (18), S∞ = 0.
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Proof. The result follows from (21)–(22) and the definition of S∞. When δt
is asymptotically constant or proportional to 1/t,

∫∞
0

δtdt = ∞, so S∞ ≡
e−

∫∞
0 δtdt = 0.

The case in which δt declines proportionally to 1/t, obtained by γ = 1, is the
edge case in which the expected length of time until a catastrophe is infinite
even though the probability of catastrophe is 1.

Though a catastrophe is here inevitable on the chosen path, it can be
seen from (22) that faster technology growth g lowers the asymptotic hazard
rate δ∗ when γ < 1. This is essentially because, when γ < 1, consumption
and thus flow utility grow at a higher exponential rate in the long run when
g is higher, so the effect of raising g is similar to the effect of decreasing the
discount rate ρ.

There is not a general result that increases to g always increase the “life
expectancy of civilization” when γ < 1, however. This is discussed briefly at
the end of Section 4.2.

Understanding the path of policy choice and risk is somewhat more complex
when γ ≤ 1 than when γ > 1, because we do not have the result that vt is
asymptotically constant, but a sketch is as follows.

As in the γ > 1 setting of Proposition 1, early in time inequality (12)
holds and it is optimal to set xt = 1. Likewise, later in time, optimality
requires setting xt < 1 so as to maintain

Atu
′(Ct) =

∂δ

∂x
· vt

=⇒ Atxt C
−γ
t = δ̄Aα

t βx
β
t vt

=⇒ δt =
C1−γ

t

βvt
. (23)

Observe from (9) that vt grows roughly with flow utility u(Ct). Flow utility,
for large Ct, then grows approximately like C1−γ

t when γ < 1. The result is
that, though consumption grows exponentially in the long run for any value
of γ, δ is asymptotically constant when γ < 1.

Intuitively, for the policy path to be optimal, it must maintain

a) the flow utility to proportionally increasing consumption, Ct · C−γ
t

=
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b) the damage done via proportionally raising the hazard rate,
which equals the hazard rate × the value of civilization.

When the value of civilization also grows like C1−γ
t , as it does when γ < 1, the

hazard rate must be constant for (a) and (b) to grow at the same rate. When
γ > 1, the value of civilization is asymptotically constant, so the hazard rate
falls like C1−γ

t .
When γ = 1, given that consumption grows exponentially, log(Ct) and

thus vt grow linearly. The hazard rate then falls proportionally to 1/t.

To focus on the scenarios in which accelerations to technological development
can affect the probability of survival, and for simplicity, we will maintain the
γ > 1 assumption throughout the remainder of the paper.

3.5 Simulation

The paths of policy choice and the hazard rate are simulated below, for the
following parameter values:

ρ 0.02 δ 0.00012
γ 1.5 α 1
g 0.02 β 2
A0 2

Table 1: Simulation parameters for Figure 1

The values of ρ, γ, and g have been chosen as central estimates from the
macroeconomics literature. A0 = 2 is chosen so that the value of a statistical
life-year at t = 75 is four times consumption per capita, roughly matching
estimates from Klenow et al. (2023).9 That is, the first year of the simulation
might be taken to denote 1949, the year at which a nuclear war between su-
perpowers first became possible, and the 75th year might be taken to denote
the time of writing. δ̄, α, and β are chosen so that the hazard rate today

9They estimate that this ratio was approximately 5 in the United States in 2019. The
figure must be adjusted upward in light of economic growth since 2019, but downward
insofar as the model is intended to describe the path of optimal policy across all countries
advanced enough to be deploying existentially hazardous technology, including many which
are poorer than the United States.
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is approximately 0.1%, matching Stern’s (2007) oft-cited figure; so that the
hazard rate begins to fall at approximately t = 100; and so that the growth
rate and then the decay rate of the hazard rate are non-negligible, for clarity
in illustration.

The probability of survival S∞ under these parameters, from t = 75
onward, is approximately 65%.
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Figure 1: Evolution of the policy choice and the hazard rate along the optimal
path

Calculations and code for replicating the simulation and corresponding
probability of survival may be found in Appendix B.

As Figure 1 illustrates, one potentially unappealing feature of the baseline
model is that it implies that, on the optimal path, the hazard rate only rises
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during the regime in which no sacrifices whatsoever are made for existential
safety. In this respect it closely resembles Stokey’s (1998) “environmental
Kuznets curve”, which also features damages which rise exponentially with
economic growth and then fall sharply past the point at which it first becomes
optimal to take action. As discussed in Section 2.2, this pattern may be at
odds with the experience of the last century, during which the hazard rate
has arguably risen alongside existential risk mitigation efforts.

As in Stokey (1998), this dynamic is essentially driven by the lack of a
lower Inada condition on 1− x. If marginal “safety expenditures” lower the
hazard rate infinitely per unit spent at x = 1, then as long as vt > 0 it is
optimal to set xt < 1, even if early in time the hazard rate is allowed to rise.
Rising δ can thus be found alongside falling x by tweaking the behavior of
the hazard function around x = 1. Such tweaks do not affect the long-run
behavior of the policy choice or the hazard rate as given by (16)–(17), which
are determined by the behavior of the hazard function around x = 0. This
is discussed further in Section 5.5.

4 How does speeding growth affect risk?

The analysis of the previous section lets us determine how various shocks to
the technology growth path affect the probability of survival in the planner’s
solution, S∞. As we will see, while the impact on risk of a temporary shock is
ambiguous, the impact of a permanent level or growth effect is always to lower
risk. Thus, while the possibility of an existential risk Kuznets curve supports
the contention that existential risk reduction is overwhelmingly valuable from
a low-discount-rate perspective, this possibility generates a case that speeding
growth is beneficial from such a perspective. In the face of an existential risk
Kuznets curve, the appearance of a tradeoff between existential risk and
growth may be only a short-term illusion.

The impact of a shock to growth on the probability of survival is explored
for a more general class of hazard functions in Section 5.4, and the results are
stated formally there in Proposition 6. Here we will illustrate the dynamics
with more discussion using hazard function (2) in particular.
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4.1 Change of variables

Absent recession or long-term stagnation, A crosses every value from A0

to ∞ exactly once. So the area under the hazard curve can be defined by
integrating with respect to A instead of t. We will refer to the area under the
hazard curve as “cumulative risk”, denoted X, and define it as a function of
the technology path A(·), assuming that the policy path is the optimal path
given A(·), denoted x[A(·)].

X
(
A(·)

)
≡

∫ ∞

0

δ̄Aα
t xt[A(·)]βdt =

∫ ∞

A0

δ̄ Aα xA[A(·)]β dA
(dA
dt

)−1

=

∫ ∞

A0

δ̄ AαȦ−1
A xA[A(·)]β dA, (24)

where xA and ȦA denote the values of x and Ȧ when the technology level
equals the subscripted A. Expression (24) for the area under the curve will
make it easier to see how shocks to growth affect cumulative risk.

Observe from (3) that the probability of survival is monotonically de-
creasing in cumulative risk, with S∞ = e−X .

4.2 Three ways of speeding growth

Temporary level effects

The effect of a temporary positive shock to the technology level At, letting xt

adjust instantaneously, depends on whether the shock occurs before or after
the regime-change time t∗.

Before t∗, temporarily raising A has no impact on the optimal choice of
x.10 δ thus rises. The future hazard rate is unaffected, so cumulative risk
increases.

After t∗, temporarily multiplying At by m > 1 multiplies the optimal

choice of xt by m−α+γ−1
β+γ−1 , by (13). In combination, the positive shock to At

and the negative impact on xt multiply δt by mα−β α+γ−1
β+γ−1 = m− (β−α)(γ−1)

β+γ−1 < 1.
This decreases cumulative risk.

10Unless the increase to A is large enough to reverse inequality (12), a case we will
ignore for simplicity.
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Permanent level effects

Consider the effect of multiplying At bym > 1, and subsequently maintaining
exponential growth inA. Observe that the initial value ofAt alone determines
the optimal subsequent path of xt. The level effect in A therefore amounts
to a “leap forward in time”: a slice cut out of the existential risk Kuznets
curve. Cumulative risk falls from (24) to∫ At

A0

δ̄ AαȦ−1
A xβ

A dA+

∫ ∞

mAt

δ̄ AαȦ−1
A xβ

A dA.

More generally, we might model a level effect as an increase to Ȧ at some
range of values of A (say, from At to mAt for m > 1). Because the exponent
on Ȧ in the integral is negative, acceleration lowers the risk endured at the
given range of technology levels. A discontinuous jump in the technology
level amounts to raising ȦA to ∞, and thus lowering Ȧ−1

A to 0, from A = At

to mAt.
In either case, such a leap may temporarily increase the hazard rate, if it

begins on the increasing side of the curve, so it may appear to contemporaries
to be increasing the risk of a catastrophe. However, a level effect (with
immediate adjustment in policy choice) actually decreases cumulative risk.

The effects of a sharp and permanent level effect are illustrated in Figure
2. The parameter values used to illustrate the baseline path are the same
as those used to simulate Figure 1. The level effect takes place “today”, at
t = 75, and multiplies A by e0.2, so that at g = 0.02, it amounts to a 10-year
leap forward.

Recall from Section 3.5 that the probability of survival (from t = 75 on-
ward) on the baseline path is approximately 65%. The proportional increase
in the probability of survival can be found analytically. Cumulative risk X
declines by precisely the area under the baseline hazard curve from t = 75
to 85; and since δ75 = 0.1%, g = 0.02, and α = 1, this difference equals

∆X = −0.001

∫ 10

0

e0.02tdt = −0.05(e0.2 − 1).

S∞ = e−X is then multiplied by

e−∆X ≈ 1.011,

so that in absolute terms S∞ rises by approximately 0.65 · 0.011 ≈ 0.7%.
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Figure 2: A level effect to growth shrinks cumulative risk

Calculations and code for replicating the simulation may be found in
Appendix B.

To state this lesson in reverse, consider the implications of a large nega-
tive level effect today, which returned the world to a state of ignorance about
every technology developed since 1924. We would largely be doomed to relive
the nuclear standoffs, emissions-intensive industrializations, and biotechno-
logical hazards of the past. With enough resets of this kind, a catastrophe
would presumably be inevitable.

Growth effects

Growth effects shrink cumulative risk for two reasons.
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First, at every moment t after the time τ initiating the growth effect, At

is higher than it would have been. In particular, if at time τ the growth rate
is multiplied by m > 1, then At (for t > τ) takes the value that Aτ+m(t−τ)

would have taken in the absence of the growth effect. Even if xt (for t > τ)
only adjusts to the value that would be optimal if the growth effect had no
effect on vt, therefore, then a growth effect effectively rescales the hazard
curve after τ , dividing its area by m.

Second, though typically less importantly, growth effects increase the
value of the future vt at each t > τ . By (12), this motivates lower choices of xt.

Unlike level effects, growth effects can even render survival possible when
it would otherwise have been impossible. In the baseline model introduced
in Section 2 and solved in Section 3, a positive probability of survival is
always feasible and always chosen on the planner-optimal path. Consider
the implications of full stagnation: a negative growth effect permanently
setting g = 0. The hazard rate is then permanently positive, and so survival
is impossible, though it would have been possible at any positive technology
growth rate.

More subtly, consider a negative growth effect in which the technology
level At grows not exponentially at rate g but power-functionally, so that
At = tk for some k > 0. The exponential growth rate of A is then not
constant at g but time-varying, with gAt = k/t. By (15) (and recalling that
gv is asymptotically zero), it then follows that δt asymptotically falls to zero

like t−
(α−β)(γ−1)

β+γ−1
k. Since cumulative risk is finite for δt ∝ t−κ iff κ > 1, the

probability of survival is positive given At = tk iff k > β+γ−1
(α−β)(γ−1)

.
Abstracting from the details of the model at hand, the more general

lesson is hopefully clear. Adding or removing a finite slice from a finite
or infinite area leaves it finite or infinite respectively, but foreshortening
a heavy-tailed curve with an infinite integral can yield a thin-tailed curve
whose integral is finite.

Importantly, the result that stagnation is deadly is driven by the assumption
that the hazard rate is always greater than zero. Given this assumption, a
positive probability of long-term survival can only be achieved by quickly
driving the hazard rate toward zero, a process which presumably requires
technological innovation. Models like that of Baranzini and Bourguinion
(1995), or the Jones (2016) “Russian roulette” model, produce the result
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that technological stagnation yields safety because they assume that, given
stagnation, the hazard rate is zero, at least if it occurs at some potential
levels of consumption or technological development. The implications of this
alternative assumption are explored further in Section 6.

Also, in the γ < 1 case of Section 3.4 in which catastrophe is inevitable,
positive growth effects do not necessarily increase “civilizational life ex-
pectancy”. In that setting, stagnation at a low level of technological devel-
opment A yields a permanent hazard rate of δ̄Aα, which may be arbitrarily
low, and thus an expected duration until catastrophe of 1/(δ̄Aα), which may
be arbitrarily high. Raising g to a large positive number can then (per-
haps quickly) yield hazard rates that permanently approximate δ∗, lowering
civilizational life expectancy to approximately 1/δ∗.

4.3 Patience vs. growth

The key mechanism at work in this paper is that as consumption grows,
people’s willingness to sacrifice consumption for safety rises. By contrast,
those concerned about the security of the long-term future often prioritize
moral persuasion, appealing to ethical arguments for a low rate of pure time
preference. Consider e.g. the Stern–Nordhaus debate (and the long debate
since) over the social discount rate to use in the context of climate policy, or
the arguments for concern for the future put forward by philosophers such as
Parfit (1984), Cowen and Parfit (1992), and more recently Ord (2020) and
MacAskill (2022). How do the these two mechanisms—a permanent level
effect to A vs. a permanent reduction to the rate of pure time preference
ρ—compare in terms of increasing the probability of survival?

We will see that, early in time, decreases to ρ are arbitrarily more
impactful than increases to A. Late in time, however, the impacts of the
two interventions are comparable.

A permanent level effect at t, whereby A is multiplied by m slightly greater
than 1, amounts to a leap forward in time of approximately m/g years. This
decreases cumulative risk by approximately δtm/g.

Before the regime-change time t∗, therefore, the impact of a level effect
on cumulative risk rises exponentially with δt over time. Early in time, when
At and δt are arbitrarily low, the impact of the level effect on cumulative risk
is arbitrarily low. The impact of a decrease to ρ on cumulative risk, on the
other hand, does not change over time before t∗. A decrease to ρ does not
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affect the hazard rate immediately, but decreases it in the future by pulling
forward the regime-change time and changing the path of the hazard rate
afterward. These impacts do not depend on when (before t∗) ρ is lowered.

By contrast, consider what happens as u(ct) → 1
γ−1

and thus vt → 1
ρ(γ−1)

.

By (13), in the limit,

xt ≈
( δ̄β

ρ(γ − 1)

)− 1
β+γ−1

A
−α+γ−1

β+γ−1

t . (25)

At large t, permanently multiplying A by m > 1 multiplies xs, at each

subsequent period s ≥ t, by approximately m−α+γ−1
β+γ−1 . In conjunction, the

increase to As and the proportional decrease to xs multiply δs by m− (β−α)(γ−1)
β+γ−1

for s ≥ t. Similarly, permanently dividing ρ by m > 1 multiplies xs (s ≥ t)

by approximately m− 1
β+γ−1 , which multiplies δs (s ≥ t) by approximately

m− β
β+γ−1 . The impacts are equal iff

(β − α)(γ − 1) = β

⇐⇒ γ = 2 +
α

β − α
, (26)

with the level effect more impactful if the left-hand side is greater and the
decrease to ρ more impactful if the right-hand side is greater. The growth-
based intervention is more impactful when γ is higher, because higher values
of γ motivate faster transitions from consumption to risk-reduction.

Since β > α > 0, expression (26) reveals that the level effect can only
be more impactful in this model if γ > 2. Still, it is notable that mere
level effects to growth can ultimately affect the probability of survival at a
comparable scale to permanent, equally-proportioned decreases to the social
rate of pure time preference (holding technology growth fixed). Put another
way, even temporary stagnation can carry long-term costs similar to those of
permanently moving ethical attitudes away from concern for the future.

5 Generalization

The results of Sections 3 and 4 are set in the economic environment of Section
2. The three central ingredients of this environment are of course the growth
path of technology, the hazard rate as a function of technology and policy,
and the utility function. A particular functional form is assumed for each.
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Throughout this section we will maintain the assumption of a CRRA
utility function with γ > 1. We will however greatly relax our assumptions
on the technology path and the hazard rate.

5.1 Assumptions

Assumptions on technology growth

Instead of assuming that technology grows exponentially, we will assume only
that A(t) satisfies the following conditions:

A1. continuous differentiability,

A2. strict monotonicity,

A3. limt→−∞A(t) = 0, and

A4. limt→∞A(t) = ∞.

We will call a technology path A(·) admissible if it satisfies A1–A4.
We will continue to treat the growth of technology as exogenous. Impor-

tantly, this is without loss of generality for our purposes. We are concerned
with the implications of a given technology path for optimal policy and cumu-
lative risk, not with how a given technology path is generated. We therefore
do not need to model how the rate of technological development may itself be
determined by a planner’s funding of research and development, innovation
by market participants, or any other forces.

Assumptions on the hazard rate

We will also consider a wider class of hazard functions. Among these, we will
find relatively simple conditions under which a given hazard function and a
given technology growth path are compatible with survival on the planner-
optimal policy. In Sections 5.2–5.3, generalizing Proposition 1, we find that
growth motivates increasing concern for safety: it is often optimal to set
x = 1 early in time and x → 0 late in time. Except in cases where lowering
risk is so difficult that it is not achieved even with stagnation in consumption,
the hazard rate is also driven to 0. In Section 5.4, generalizing Section 4,
we likewise find that when a hazard function is compatible with survival,
faster growth in consumption technology generally increases the probability



24

of survival. The results support the robustness of the primary lessons drawn
from hazard function (2): that survival is likely possible on the optimal path,
and that faster consumption technology growth, if efficiently regulated, will
make raise its probability.

In Section 5.5, we will identify two particular hazard functions in this
class that may be of interest. The first illustrates that, early in time, the
hazard rate may increase alongside smooth declines in x. The second is
“microfounded” by an assumption that increases in safety expenditure lower
risk through redundant safeguards.

Return to the three desiderata preceding the introduction of hazard function
(2). We will assume weakenings of two of these desiderata directly, and
certain results will require a weakening of the third. In particular, we will
universally assume that the hazard rate increases in x no less quickly than
in A and is weakly convex in x. For certain results we will assume that the
hazard rate does not decrease too quickly in A.

We will add to these the preliminary conditions that δ(·) is continuously
differentiable; that, when consumption equals zero, so that the entire pro-
ductive capacity of society is dedicated to existential risk reduction, δ = 0;
and that otherwise δ > 0.11

Formally, we will assume at most that the hazard rate is a function of
A > 0 and x ∈ (0, 1] satisfying the following conditions:

D1. δ(A, x) > 0,

D2. limx→0 δ(A, x) = limA→0 δ(A, x) = 0,

D3. twice continuous differentiability,12

D4. ηx(A, x) ≥ ηA(A, x), and

D5. weak concavity in x,

where ηy denotes the elasticity of δ with respect to y ∈ {A, x}. We will call
a hazard function admissible if it satisfies D1–D5.

11Recall that the hazard rate denotes the flow probability of anthropogenic existential
catastrophe.

12We will define ∂δ
∂y (A, 1) ≡ limx→1

∂δ
∂y (A, x) for y ∈ {A, x}, and allow these derivatives

to be infinite.
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Note that the constant elasticity hazard function of Sections 2–4 is ad-
missible, with ηA = α and ηx = β independent of A and x. Note also that
we do not require ηA(A, x) always to be positive. That is, we will allow for
the possibility that new technologies sometimes lower the hazard rate at a
given degree of foregone consumption.

5.2 Stagnation vs. unbounded consumption

Let C∗ ≡ limt→∞Atxt, when this limit is defined.
Given hazard function (2), C∗ = ∞. This follows from Proposition 1.

Since limt→∞ gxt = −α+γ−1
β+γ−1

g, limt→∞ gAx,t = (1− α+γ−1
β+γ−1

)g, which is positive
by the assumption that β > α. In the long run, consumption growth is
positive and exponential.

However, some hazard functions satisfying D1–D5 motivate decreases to
x fast enough that we do not have C∗ = ∞. C∗ may be finite, or Ct may
oscillate indefinitely without growing ever higher.

Proposition 3. Stagnation vs. unbounded consumption
Define

R(C) ≡ lim
A→∞

∂δ

∂x

(
A,

C

A

) Cγ

A
v̄, (27)

R∗ ≡ lim
C→∞

R(C).

Given an admissible technology path and hazard function,

a) If R∗ ≤ 1, then C∗ = ∞.

b) If R∗ > 1, then C∗ ̸= ∞.

Proof. See Appendix A.3.

To interpret the result, recall that x = C/A. The limit in (27) characterizes,
if C is fixed even as A grows, what happens to the ratio of the marginal
value of lowering x via increased safety ( ∂δ

∂x
· v) to the marginal utility of

raising x via increased consumption (AC−γ). If the ratio approaches 1, then
it is optimal for consumption to stagnate in the long run at C. If the ratio
is greater than 1 for sufficiently large C, therefore, then stagnation at some
finite C is optimal. If the ratio is less than or equal to 1 even as C → ∞,
then stagnation is not optimal.



26

Recall from (11) that v̄ ≡ 1
ρ(γ−1)

. When R(C) > 0, therefore, R(C) is de-
creasing in ρ. A lower discount rate ρ can thus shift R∗ from below to above
1, resulting in stagnation when there would otherwise have been long-run
consumption growth, but never the reverse. There is no general result that
consumption stagnation is desirable when ρ is sufficiently low, or undesirable
when ρ is sufficiently large: for many hazard functions, as implicitly shown
at the end of Section 5.3, R∗ is above 1 (even infinite) or below 1 (even 0) for
any ρ > 0. Still, Proposition 3 illustrates how calls for an “end to growth”
of some kind may be compatible with the results at the heart of this paper.
Concern for the future can motivate controls on technological deployment
strict enough to halt growth in consumption, despite the tendency for ac-
celerating (even impatiently-regulated) technological development to lower
cumulative risk.

5.3 The Kuznets curve generalized

Proposition 4. The Kuznets curve generalized
Given an admissible technology path and hazard function,

a) limt→−∞ xt = 1.
If ηA is bounded above 1− γ, then limt→∞ xt = 0.

b) limt→−∞ δt = 0.
If C∗ = ∞, then limt→∞ δt = 0.
If C∗ ̸= ∞, ηA is bounded above 1− γ, and ηx is upper-bounded, then
limt→∞ δt ̸= 0.

Proof. The proof of (a) is given in Appendix A.4. The proof of (b) is as
follows.

By D1, D2, and D5, δ(A, x) is non-decreasing in x. So for all t, δt ≤
δ(At, 1). By D2, limA→0 δ(A, 1) = 0. So by A3, limt→−∞ δt = 0.

For the positive limit, begin with the weak first-order condition that the
marginal flow utility of increasing x must weakly exceed the marginal cost
via an increased hazard rate. Then multiply both sides by xt:

A1−γ
t x−γ

t ≥ ∂δ

∂x
(At, xt) vt

=⇒ (Atxt)
1−γ ≥ ∂δ

∂x
(At, xt)xt vt. (28)
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If C∗ = ∞, the left-hand side of (28) tends to 0. Since v is (eventually)
positive and does not fall by D4, ∂δ

∂x
x → 0. Since ∂δ

∂x
x ≥ δ by D1 and D5,

δ → 0.
If ηA is bounded above 1 − γ, limt→∞ xt = 0 by (a). Since eventually

xt < 1, eventually (28) holds with equality. If C∗ ̸= ∞, the left-hand side
does not tend to 0 in the limit. Because vt is upper-bounded,

∂δ
∂x
x does not

tend to zero either. So if ηx ≡ ∂δ
∂x

x
δ
is upper-bounded, δ ̸→ 0.

Part (b) of the proposition stems from the fact that, as long as consumption
rises without bound, its marginal utility falls to zero. If the hazard rate does
not also fall to zero, the marginal value of sacrificing consumption to lower
it further stays positive. The hazard rate must therefore fall to zero.

Even so, unbounded consumption growth does not necessarily coincide
with a positive probability of survival. To achieve S∞ > 0, δt must not only
fall to 0 but fall sufficiently quickly. This in turn is guaranteed whenever
consumption rises sufficiently quickly, which holds under a strengthening of
the condition for unbounded consumption growth from Proposition 3.

Proposition 5. Survival generalized
Given an admissible technology path such that, for some k > 1 and some t
we have

At ≥ t
k

γ−1 ∀t > t, (29)

define

R̃(k) ≡ lim
t→∞

∂δ

∂x

(
At,

t
k

γ−1

At

)t kγ
γ−1

At

v̄.

Given an admissible technology path satisfying (29) and an admissible hazard
function,

a) If limk↓1 R̃(k) < 1, then ∃t : Ct > t
1

γ−1 ∀t > t and S∞ > 0.

b) If limk↑1 R̃(k) > 1, then ∃t : Ct < t
1

γ−1 ∀t > t.
If in addition ηx is upper-bounded, then S∞ = 0.

Proof. See Appendix A.5.
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Observe that, similar to R(·), R̃(k) is the long-run ratio of the marginal value
of lowering risk to the marginal value of increasing consumption when

Ct ∝ t
k

γ−1 . (30)

If R̃(k) < 1 on this consumption path, for some k > 1, then on this
path consumption grows too slowly. It is eventually preferable to raise xt

above its implied level of approximately t
k

γ−1/At. So if limk↓1 R̃(k) < 1, Ct

eventually grows more quickly than (30) for some k > 1 on the optimal path.
Conversely, if limk↑1 R̃(k) ≥ 1, Ct eventually grows more slowly than (30) for
k = 1.

If Ct grows more quickly than (30) for some k > 1, then the left-hand
side of (28) falls more quickly than t−k for some k > 1. So ∂δ

∂x
x does as well.

Recalling that δ < ∂δ
∂x
x, this ensures a positive probability of survival.

If Ct grows more slowly than (30) for k = 1, then the left-hand side of
(28) falls more slowly than 1/t. The right-hand side equals ∂δ

∂x
x · v = ηx/δ · v.

If ηx is upper-bounded, δ falls more slowly than 1/t. Cumulative risk is
therefore infinite, and survival is impossible.

For illustration, let us evaluate the constant elasticity hazard function of
Section 2 for the case of At = egt, g > 0.

R̃(k) = lim
t→∞

δ̄eαgtβ
(t k

γ−1

egt

)β−1 t
kγ
γ−1

egt
v̄

= δ̄βv̄ lim
t→∞

e−(β−α)gtt
β+γ−1
γ−1

k = 0 (31)

for any k, since β > α. So limk↓1 R̃(k) = 0 < 1. Part (a) of Proposition 5 thus
confirms our earlier conclusion that, with hazard function (2), consumption
grows at least as quickly as a sufficient power function (in fact it grows
exponentially) and that there is a positive probability of survival.

By contrast, consider the constant elasticity hazard function but with
α = β. In this case, (31) = ∞ for any k, so limk↑1 R̃(k) = ∞ > 1. Also, ηx
is constant at β, and so upper-bounded. δ(A, x) = Ax is thus an example
of a hazard function satisfying D1–D5 for which the probability of survival
on the optimal path is zero (and in fact is so for any A(·) that is eventually
bounded above zero).
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5.4 Acceleration weakly lowers risk

For any admissible hazard function, the lessons of Section 4 are essentially
maintained. The effect of a temporary level effect on the probability of sur-
vival is ambiguous. However, if the probability of survival is positive on the
planner-optimal policy path, given the baseline technology path, then an ac-
celeration to technological development increases the probability of survival.
If the probability of survival is zero on the planner-optimal policy path, then
an acceleration to technological development may increase the probability of
survival or have no effect.

Acceleration is formally defined and analyzed below. First, we will briefly
note the impacts of a marginal, temporary level effect.

Let

ηxy(At, xt) ≡
∂

∂y

(∂δ
∂x

(At, xt)
)
·

∂δ
∂x
(At, xt)

yt
,

for y ∈ x,A, denote the elasticity of ∂δ/∂x with respect to y.
If A1−γ

t > ∂δ
∂x
(At, 1)vt, so that xt = 1 and the xt ≤ 1 constraint binds,

then multiplying At by m slightly above 1 multiplies δt by approximately
mηA(At,1) ≥ 1.

If the xt ≤ 1 constraint does not bind, so that (28) is maintained with
equality as At rises, then multiplying At by m slightly above 1 has a direct
impact and possibly an indirect impact on the hazard rate. The direct impact
is again to multiply δt by approximately mηA(At,xt). The possible indirect
impact is to affect the choice of xt. Letting ξ(At, xt) denote the elasticity of
chosen x to A around (At, xt), to maintain equality (28) as At varies we must
have

ξ(At, xt) =
1− γ

γ
− 1

γ

(
ηxA(At, xt) + ξ(At, xt)ηxx(At, xt)

)
=⇒ ξ(At, xt) = −ηxA(At, xt) + γ − 1

ηxx(At, xt) + γ
.

(Observe that vt is unaffected by a one-period change to At and xt.) If
ξ(At, xt) > 0 and xt = 1, the marginal increase to At does not affect the
chosen xt. Otherwise, the overall elasticity of the hazard rate to At, in the
context of an instantaneous level effect, is not ηA(At, xt) but

ηA(At, xt) + ξ(At, xt)ηx(At, xt). (32)
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This is negative in the context of hazard function (2), yielding the earlier
result that when x < 1, temporary level effects lower the hazard rate.
Under the weaker conditions here, the sign of (32) is ambiguous. This is
illustrated in the beginning of the next subsection, with a hazard function
under which, early in time, increases to A—even combined with increases
to v—motivate such slow decreases to x than on balance the hazard rate rises.

By contrast, some lasting shocks to the growth path have more predictable
effects. Given a growth path A(·) satisfying A1, A2, and A4, we will say that
a continuously differentiable (A1-satisfying) growth path Ã(·) with Ã(0) =
A(0) is an acceleration to A(·) if, for some τ > 0, Ã′(t) > A′(t) for t ∈ (0, τ)
and

∃m > 0 : Ã(t) = A(t+m) ∀t ≥ τ.

Without loss of generality, we are setting the time denoted “0” to be the
beginning of the acceleration.

We will say that the acceleration is permanent if τ = ∞ and temporary
otherwise.

Proposition 6. Acceleration weakly lowers risk
Given an admissible technology path A(·) and hazard function δ(·), and a
continuous growth path Ã(·) that is an acceleration to A(·):

a. If X(A(·)) < ∞, then X(Ã(·)) < X(A(·)).

b. If X(A(·)) = ∞ and the acceleration is temporary, then X(Ã(·)) = ∞.
If X(A(·)) = ∞ and the acceleration is permanent, then X(Ã(·)) may
be finite or infinite.

Proof. See Appendix A.6.

The intuition is the same as illustrated in Section 4. Acceleration in effect
horizontally rescales all or part of the hazard curve.

Accelerations vs. level effects

Given a growth path A(·) satisfying A1, A2, and A4, say that a continuously
differentiable growth path Ã(·) with Ã(0) = A(0) is a level effect to A(·) if,
for some τ > 0, Ã′(t) > A′(t) for t ∈ (0, τ) and

∃m > 1 : Ã(t) = mA(t) ∀t ≥ τ.
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When technology growth is exponential, temporary accelerations are equiv-
alent to level effects. Otherwise, they are sometimes distinct.

Unlike temporary accelerations, level effects do not always decrease cu-
mulative risk outside the exponential growth context. Consider for example
hazard function (2) with a technology path A(t) that is roughly stagnant for
an arbitrarily long period—say, [t∗ − 100, t∗ − 1]—before the regime-change
time t∗, and growth exponential outside this window. A brief level effect
around t∗ − 100 can raise the technology level during the long period of
stagnation, which non-negligibly raises cumulative risk, while lowering cu-
mulative risk only negligibly by cutting a vertical slice from the hazard curve
following t∗ − 1.

The direction of technical change

At face value, this is a model in which there is a single dimension to tech-
nological development. Inventions simply occur in sequence, each of which
increases potential consumption but has an idiosyncratic effect on the haz-
ard rate at any given level of consumption. (Recall that we allow δ(A, x)
to decrease in A.) This one-dimensionality may seem unrealistic. In prac-
tice, technological development is surely at least somewhat directed, with the
tradeoffs between consumption and risk in later periods affected by the ex-
tent to which policymakers and market participants in earlier periods have
supported research into various types of technology. Consider for example
the “richer model” of Jones (2016), in which increases in the value of life
relative to consumption motivate increases not only in health spending but
also in medical R&D.

As with our assumption that the baseline growth rate of technology at
each time is exogenous, however, the assumption that the path of technology
is exogenous is also essentially without loss of generality. A path of maxi-
mum potential consumption levels {At} and a hazard function δ(A, ·) simply
describe a path of possibilities frontiers over time, without embedding any
assumptions about how this path of possibilities frontiers is generated. If
we posit a wider space of possible production technologies than the sequence
adopted on the baseline path, we must clarify that “accelerations” consist of
increases to the rate of motion along the baseline path.

Proposition 6 only applies to accelerations in this sense. Subsidizing
the development of risky technologies that would not otherwise have been
invented, or choosing a technology path on which they are invented sooner
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than they would have been but risk-decreasing technologies are not, does not
necessarily lower cumulative risk.13

5.5 Two hazard functions of interest

We will assume throughout this section that technology growth is exponential
at rate g > 0.

A lower Inada condition on safety

As we have seen, given a constant elasticity hazard function, δ rises as long as
it remains optimal to maximize consumption, and falls immediately once it
becomes optimal to begin choosing sub-maximal consumption out of concern
for safety. And as noted at the end of Section 3, this result is arguably at
odds with the experience of the last century. We will therefore here explore
how to tweak the hazard function so that the Kuznets curve is smoothed,
and the policy choice variable falls even early in time while the hazard rate
is still rising.

A constant elasticity hazard function generates a distinct pair of regimes
for the same reason here as in Stokey (1998): namely because, when
x = 1, marginal “safety expenditures”—decreases to x—produce only finite
marginal benefits. That is, there is no “lower Inada condition on safety”. It
is therefore optimal to maximize consumption until the marginal utility of
consumption has fallen and the marginal value of existential risk reduction
efforts have risen, as we have seen, and then at once to begin lowering x
roughly exponentially. We will say that a hazard function exhibits a lower
Inada condition on safety if limx→1

∂δ
∂x

= ∞. Under this condition, it is opti-

13In addition to modeling the policy choice about how much consumption to sacrifice for
an instantaneous reduction to the hazard rate, an earlier version of this paper models the
technology path as directed by policy as well. The growth model is semi-endogenous, so to-
tal potential technology growth is driven by exogenous population growth, but research is
optimally allocated between risk-increasing “consumption technology” and risk-decreasing
“safety technology”. Conceptually, that model sheds light on the same question as this
one—how acceleration affects cumulative risk, given an endogenous policy response—but
the objects of study are accelerations to population rather than to technology itself. Nu-
merical estimation suggests that acceleration decreases cumulative risk in that context as
well, for the same reasons as it does here. When population growth is accelerated, and
labor is allocated optimally across fields, society traverses roughly the same technology
path but more quickly.

https://globalprioritiesinstitute.org/wp-content/uploads/Leopold-Aschenbrenner_Existential-risk-and-growth_.pdf
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mal to set xt < 1 as long as vt > 0: as long as civilization is worth preserving
at all, some expenditures on existential risk reduction are worthwhile.

Not every hazard function with a lower Inada condition on safety behaves
like a smoothed version of a constant elasticity hazard function. If the inverse
of the hazard function is too concave around x = 1 (when A is low), then x
may fall rapidly, rather than mildly, from the outset, yielding no early period
during which x ≈ 1. If it is not concave enough around x = 1, on the other
hand, then early decreases to x produce significant decreases to δ, so that
the hazard rate falls even early in time.

One class of hazard functions with the desired features is

δt = δ̄Aα
t x

β
t

1− (1− xt)
ϵ

xt

, ϵ ∈
(1
2
, 1
)
, (33)

where the conditions on parameters other than ϵ are as before. The dis-
tinction between the hazard functions is illustrated below for the case of
δ̄Aα = 1, ϵ = 0.6, β = 2. The solid curve represents the old hazard function;
the dashed curve represents the new hazard function, vertical at x = 1.

0 1

1

x

δ

Note that

lim
x→0

1− (1− xt)
ϵ

xt

= ϵ,

so the asymptotics in this case are identical to those in the case of a constant
elasticity hazard function (except that the hazard rate is multiplied by ϵ).
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The transition dynamics, however, are qualitatively different. Though it is
now optimal to set x < 1 as long as v > 0, x now falls smoothly and δ
smoothly rises and falls. The paths of the hazard rate and policy choice are
illustrated below for ϵ = 0.6, A0 = 2.03, and otherwise the same parameter
values as in Table 1.14
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Figure 3: Evolution of the policy choice and the hazard rate along the optimal
path given a lower Inada condition on safety expenditure

Derivations and code for replicating the simulation may be found in Ap-
pendix B.

14A0 is raised slightly in order to maintain that the value of a statistical life-year “today”
(at t = 75) is four times per capita consumption, and the hazard rate is approximately
0.1%, despite the fact that, in this model, consumption and the hazard rate are slightly
less than maximal even early in time.
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Safety in redundancy

The constant elasticity hazard function of Sections 2–4, and its tweak just
above, were chosen for clarity. We might however be interested in a better-
founded story about the shape of the hazard function, in which the hazard
rate is determined by the production of consumption goods and safety goods.
For illustration, one relatively straightforward story would be as follows.

• Each unit of consumption (still produced as Ct = Atxt) poses some risk
p of catastrophe per period in the absence of any safety measures.

• For each unit of the consumption good, if one unit of the safety good
(produced as Ht = At(1−xt)) is allocated to preventing the production
process from causing a catastrophe, this fails to prevent a catastrophe
with probability b̃ < 1. That is, one unit of H per unit of C multiplies
the risk posed by each unit of C by b̃, from the baseline of p.

• The probability that the production of a given unit of consumption
results in a catastrophe is the probability that (a) there would have
been a catastrophe in the absence of any safety measures and (b) all
H/C safety measures fail independently: pb̃H/C .

• The probability that the world survives a given period is the probabil-
ity that all C units of consumption, independently, do not generate a
catastrophe: (1− pb̃H/C)C .

In discrete time, the story above would correspond to the hazard function

δ(At, xt) = 1−
(
1− pb̃

1−xt
xt

)Atxt
, b̃ ∈ (0, 1). (34)

The continuous-time analog to (34) is

δ(At, xt) = Atxte
−b

1−xt
xt , b > 0 (35)

(see Appendix A.7).
Since hazard function (35) lacks any sort of lower Inada condition on

1 − x, x is fixed at 1, and δ rises, early in time while v > 0. After the
relevant calculations, Propositions 3–5 tell us that (35) yields a Kuznets
curve, with δ eventually falling quickly enough to permit survival.
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Proposition 7. Long-run policy choice and risk given safety in
redundancy
Given hazard function (35), the optimal path features

lim
t→∞

xtt =
b

gγ
, (36)

lim
t→∞

gδt = −g(γ − 1). (37)

Proof. See Appendix A.8.

Thus the decline in policy choice here is slower than in the constant
elasticities case: x declines proportionally to 1/t rather than exponentially.
This results from the fact that a model of redundancy yields a hazard rate
that falls rapidly in the policy choice variable: unit decreases in Atxt, rather
than merely proportional increases, generate proportional decreases to δ. In
both cases, however, xt → 0. And in both cases, δt declines exponentially,
and so quickly enough to permit survival.

Comparing (37) to the limiting expression for gδ from Proposition 1,
we see that, in the limit, the hazard rate declines more quickly in the
redundancy-based model than in the basic model. Mathematically, this fol-
lows from the fact that the extra coefficient on g(γ − 1) in the limiting
expression for gδ from Proposition 1 is less than one:

α > 0, γ > 1 =⇒ β − α

β + γ − 1
< 1.

Intuitively, this too stems from the fact that, in a redundancy-based model,
smaller sacrifices in consumption (linear rather than proportional) are nec-
essary to yield proportional decreases to the hazard rate. The planner’s
response to this expanded possibilities frontier comes partially in the form of
slower increases in foregone consumption, as described by (36), and partially
in the form of faster declines in the hazard rate, as described by (37).

6 Transition risk

A hazard function of the form δ(At, xt) captures what might be called “state
risk”: δ depends on the level of technology. On this framing, it is perhaps
unsurprising that escaping risky states more quickly lowers cumulative risk.
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But risk may instead be “transitional”: posed by technological develop-
ment. This is the intuition captured by Jones’s (2016) “Russian roulette”
model of technological development and (2023) model of AI risk, and by
Bostrom’s (2019) analogy to drawing potentially destructive balls from an
urn. Perhaps stagnation at a given level of technology is essentially safe, and
risk arises in the process of discovering and deploying new technologies with
unknown consequences.

6.1 A transition-risk-based hazard function

To explore this possibility, suppose δ increases in Ȧt instead of, or as well as,
in At. For simplicity, we will again restrict our consideration to a constant
elasticity hazard function:

δt = δ̄Aα
t Ȧ

ζ
tx

β
t , δ̄ > 0, ζ ≥ 0, β > α + ζ > 0, β > 1. (38)

We will also again assume that A grows at a constant exponential rate g > 0
on the baseline technology path.

Since gȦ = g on this path, β > α + ζ is now the condition necessary for
survival without Ct = Atxt → 0, and α + ζ > 0 is now the condition under
which growth increases the hazard rate when x is fixed.

Our original hazard function (2) is the special case of (38) with ζ = 0. This
model is thus an alternative generalization of hazard function (2), comple-
mentary to that of Section 5.

As long as ζ > 0, however, the model is most straightforwardly interpreted
as one in which new technologies—new “draws from Bostrom’s urn”—consist
of absolute increases to A. The introduction of multiple technologies can pose
more, less, or equal risk if they are introduced concurrently than if they are
introduced in sequence, depending on whether ζ is greater than, less than,
or equal to 1. The development of more advanced technologies can pose
more, less, or equal risk as compared to the development of less advanced
technologies, depending on the sign of α.

Alternatively, the model may be interpreted as one in which new tech-
nologies consist of proportional increases to A. This can be seen by rewriting
the hazard function as

δt = δ̄Aα+ζ
t

(Ȧt

At

)ζ

xβ
t .
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On this interpretation, the assumption that α + ζ > 0 amounts to the as-
sumption that the development of more advanced technologies poses more
risk than the development of less advanced technologies. Because Ȧ/A has
been approximately constant throughout the last century, the view that the
hazard rate has risen must be attributed to the increasing danger of each
“technological development” in this sense.

6.2 Acceleration still typically weakly lowers risk

Since Ȧ is proportional to A, the planner’s problem is unchanged (up to a
coefficient gζ that can be rolled into δ̄). Baseline x and δ paths, and S∞,
are unchanged. Let A∗ denote the uppermost technology level at which it is
optimal to set x = 1.

To examine the impact of accelerating growth on cumulative risk, it will
again be helpful to integrate the hazard curve with respect to A:∫ ∞

0

δ̄Aα
t Ȧ

ζ
tx

β
t dt =

∫ ∞

A0

δ̄ Aα Ȧζ
A xβ

A dA
(dA
dt

)−1

=

∫ ∞

A0

δ̄ AαȦζ−1
A xβ

A dA. (39)

Writing x as a function of A, we have

xA =

1 A ≤ A∗,(
δ̄βAα+γ−1Ȧζ

AvA

)− 1
β+γ−1

A > A∗.
(40)

Substituting (40) into (39) yields∫ A∗

A0

δ̄AαȦζ−1
A dA

+

∫ ∞

A∗

(
δ̄1−γββA(β−α)(γ−1)vβA

)− 1
β+γ−1 Ȧ

ζ γ−1
β+γ−1

−1

A dA. (41)

Recall that temporary accelerations, here equivalent to permanent level
effects, are temporary increases to Ȧ. While they are underway, they increase
vA, and they have no impact on vA for technology levels after they conclude.

Before A∗, therefore, temporary accelerations decrease cumulative risk if
ζ < 1, increase it if ζ > 1, and have no effect if ζ = 1. The ζ = 1 case
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is arguably central, especially before A∗: if no effort is made to mitigate
the dangers of risky experiments, it should not matter whether they occur
serially or in parallel.

After A∗, however, temporary accelerations decrease cumulative risk as
long as

ζ
γ − 1

β + γ − 1
≤ 1. (42)

It is sufficient, though not necessary, for (42) that

ζ ≤ 1 or α ≥ −1, γ ≤ 2.

The ζ ≤ 1 case follows from the fact that γ−1
β+γ−1

< 1. The α ≥ −1, γ ≤ 2

case follows from the fact that if α ≥ −1, then ζ < β + 1, so ζ
β+1

< 1. Since
macroeconomic estimates of γ ≤ 2 are standard, this result suggests that, for
typical parameter values, accelerations to technology growth lower or have
no effect on cumulative risk on the optimal path in the context of transition
risk.

The condition of an upper bound on γ may be counterintuitive, because
higher values of γ lower the marginal utility of consumption and motivate
more rapid reallocations of resources from consumption to safety. The result
is driven by the fact that, when γ is high, the marginal utility of consumption
rises rapidly as x is cut, so only a small cut to x suffices to maintain the con-
dition that the marginal utility of consumption equals the marginal disutility
incurred by raising the hazard rate. The higher γ is, the more quickly x falls
as A rises, but the less sensitive x is to a change in ∂δ/∂x at a given value
of A.

Level effects that cross the A∗ threshold will be ignored for simplicity.

Growth effects are simply permanent increases to Ȧ. If they begin at A, they
increase vA for allA ≥ A. This shrinks the hazard rate at allA > max(A,A∗).
If A < A∗, this also lowers A∗. Both effects shrink cumulative risk (41) and
so raise S∞. Otherwise their impacts are like those of level effects.

Stagnation vs. deceleration

When ζ > 0, complete stagnation (Ȧ = 0) is the safest path of all. Never-
theless, we have seen that given a positive growth rate, faster growth often
decreases risk.
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The key to this puzzle is that, given stagnation at Ā, levels of A > Ā
are never attained. Cumulative risk is therefore not (39) but (39) with the
∞ replaced with Ā. Absent stagnation, however slow the growth rate, all
levels of A are attained. The growth rate only determines the risk endured at
each one. The direct cost of faster progress during a given range of A-values
(higher risk per unit time, to the extent that ζ > 0) is partially, and may be
more than fully, outweighed by the fact that faster progress motivates more
mitigation at each point in time, in combination with the now familiar fact
that when progress is faster we do not linger in a given range of A-values as
long.

7 Conclusion

Human activity can create or mitigate existential risks. The framework pre-
sented here illustrates that, under relatively mild assumptions, existential
risk satisfies the conditions that give rise to a Kuznets curve. This observa-
tion offers a potential economic explanation for the claim by some prominent
thinkers that humanity is in a critical “time of perils”. We may be econom-
ically advanced enough to be able to destroy ourselves, but not yet enough
that we are willing to make large sacrifices for the sake of safety. If we are
indeed living through the time of perils, reductions to existential risk today
will have a massive expected impact on the course of the long-run future.

At the same time, this framework highlights a channel through which
some efforts intended to reduce existential risk may backfire. When tech-
nology is efficiently regulated, even by a policymaker with little concern for
the long-term future, broad-based decelerations to technological development
generally either worsen or have no impact on the odds of long-term survival.
This cost can be significant, with proportional consumption decreases having
comparable impacts to proportional increases in the planner’s rate of time
preference. In the extreme, permanent technological stagnation can make a
catastrophe inevitable that might otherwise have been avoided.

This is far from an argument against regulating the use of risky technolo-
gies. Indeed, the primary channel explored here through which technological
development lowers risk is that it hastens the day when regulation is severe.
Some recent reactions against calls to heavily regulate AI, e.g. that of An-
dreessen (2023), might be read as expressing the view that our “x” should
never be set far below one. If that is so, it is not for the reasons presented
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in this paper.
The reasoning presented here also does not imply that decelerations to

technological development inevitably raise cumulative risk: only that they
typically do so when technology is efficiently regulated. If the policy re-
sponse to dangerous new technologies is not efficient—for instance, if there
is a long-term limit to the speed at which new safeguards can be imposed—
then the impact of a technological acceleration on cumulative risk is ambigu-
ous. In fact, Shulman and Thornley (2024) argue that the policy response
to hazardous technologies to date has been far from efficient. The appro-
priate lesson is only that, to the extent that the regulatory regime does or
will eventually move toward equating the marginal utility of consumption
to the marginal discounted utility of existential risk reduction (per unit of
consumption sacrificed), consumption-increasing technological development
today has the unseen but potentially large benefit of speeding future safety
efforts. For slowing technological development to lower cumulative risk, the
policy inefficiency in question must be severe and lasting enough to outweigh
this benefit.

In this light, further research on the nature of any policy distortions
around the regulation of hazardous technologies would be valuable. Explor-
ing the long-term implications of other models of optimal policy in the face
of anthropogenic existential risk—beyond the simple state- and transition-
risk-based relationships explored here—could be valuable as well, so as to
better characterize the scope of the result that efficiently regulated accelera-
tion weakly lowers cumulative risk. If plausible models are found under which
the result is overturned, this will naturally pose an important question which
can only be answered empirically. For now, however, the results presented
here suggest that even those exclusively concerned with reducing cumula-
tive existential risk should often cheer technological advances despite their
short-term hazards, and advocate risk-reduction measures today only when
they are sufficiently targeted and the costs to technological development are
sufficiently small.
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Appendices

A Proofs

A.1 Characterizing the optimal path

Necessary and sufficient conditions

The dynamic optimization problems analyzed in this paper all feature one
choice variable x and one state variable S. Expected flow utility at t is
Stu(At, xt) for a continuously differentiable function u(·), strictly concave in
x, with a lower Inada condition on x. The law of motion for S is given
by −Stδ(At, Ȧt, xt) for a continuously differentiable function δ(·). A and Ȧ
are independent of x, so operate simply as functions of t. Letting v denote
the costate variable on S, the current value Lagrangian corresponding to the
problem is then

L(St, xt, vt, µt, t) = Stu(xt, t)− vtStδ(xt, t) + µtSt(1− xt) (43)

(abusing notation slightly by reusing u(·) and δ(·) as functions of time),
where µt represents the the Lagrange multiplier on xt. We impose the xt ≤ 1
constraint but not the xt ≥ 0 constraint because the latter can never bind,
by the lower Inada condition on u(·).

(43) satisfies the Mangasarian concavity condition that L(·) is everywhere
concave in S and x. So, applying Caputo (2005), Theorems 14.3-4 and
Lemma 14.1,15 given continuous paths of x ∈ [0, 1] and S ∈ [0, 1] with S0 = 1
and Ṡt = −Stδ(xt, t), we have that the x, S path is optimal if—and, given
piecewise continuity of x and S, only if—for some piecewise differentiable
path of v and some piecewise continuous path of µ ≥ 0, at all t the following
first-order conditions are satisfied

∂L
∂xt

(St, xt, vt, µt, t) = 0, (44)

∂L
∂µt

(St, xt, vt, µt, t) ≥ 0, (45)

µt
∂L
∂µt

(St, xt, vt, µt, t) = 0 (46)

15Caputo (2005) uses the more general present value notation. Because the control prob-
lem at hand is exponentially discounted, we here use the simpler current value notation.
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as well as the transversality condition that

lim
t→∞

e−ρtvt = lim
t→∞

e−ρtvtSt = 0. (47)

Furthermore, given optimal paths of x and S and corresponding paths of v
and µ, v will satisfy

v̇t = ρvt − u(xt, t)− vtṠt

= (ρ+ δ(xt, t))vt − u(xt, t) (48)

except at any discontinuity points of x, at which v will have different right
and left derivatives.

Interpreting the transversality condition

Given a continuous v path, only the paths of x and µ defined by

xt =

{
1, ∂u

∂x
(1, t)− ∂δ

∂x
(1, t)vt ≥ 0;

xt : ∂u
∂x
(xt, t)− ∂δ

∂x
(xt, t)vt = 0, otherwise

(49)

µt =
∂u

∂xt

(xt, t)−
∂δ

∂xt

(xt, t)vt (50)

satisfy (44)–(46) for all t. Any such x path is well-defined, by the continuous
differentiability of u(·) and δ(·) and the fact that u(·) and δ(·) strictly increase
in x. Any such x path is also continuous in time, by the twice continuous
differentiability of u(·) and δ(·) (expressed as functions of x and A) and the
continuous differentiability of A(·), and the implicit function theorem. Any
such µ path is then also continuous in time by the composition of continuous
functions. To show there exists an optimal path, and that only one such path
is piecewise continuous, it will now suffice to show that there is a unique v
path for which (47)–(48) are satisfied given the corresponding x path (49) and
its implied S path, and that the corresponding x path is piecewise continuous
(in fact it is continuous everywhere).

The solution to differential equation (48) is

vt = e
∫ t
0 (ρ+δs)ds

(
v0 −

∫ t

0

e−
∫ s
0 (ρ+δq)dqu(xs, s)ds

)
(51)

=⇒ v0 =

∫ t

0

e−ρsSsu(xs, s)ds+ e−ρtStvt. (52)
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Since (52) is continuous in t (by the continuity of x in t and the continuous
evolution of S) and holds for all t, v satisfies (47)–(48) iff

v0 =

∫ ∞

0

e−ρtStu(xt, t)dt. (53)

That is, the value of increasing the probability of survival, as of time 0, must
equal the expected utility of the future (given survival past time 0).

Given (49), vt determines xt for all t, and given (48), vt and xt determine
v̇t for all t. For a given v0, therefore, there is a unique path of v—and thus of
x, and thus of S—compatible with (48)–(49). We will now show that there
is at least one value of v0 for which (53) is satisfied, given the corresponding
x and S paths. For such a v0, the corresponding variable paths will by
construction satisfy (44)–(47), and thus constitute an optimum.

Existence

Let v(v0) and x(v0) denote the unique paths of v and x compatible with (48)–
(49) for which v0(v0) = v0. By (51), limv0→−∞ vt(v0) = −∞ for all t ≥ 0.
By (49), therefore, for every t ≥ 0, there is a ṽ0 such that xt(v0) = 1 for all
v0 < ṽ0. Let s ≥ 0 denote a time at which As ≥ 1, and choose ṽ0 low enough
that ṽs < 0 and thus xs(ṽ0) = 1. By (48), because u(1, s) ≥ 0, ˙̃vt < 0. We
thus have ṽt < 0, and thus xt = 1, for all t ≥ s.

Now observe that if v0 < ṽ0, vt(v0) < vt(ṽ0) for all t; otherwise, by the
continuity of v with respect to time, there would be a t with vt(v0) = vt(ṽ0),
and (48)–(49) would allow us to unroll the paths identically so as to yield
v0 = ṽ0. Thus, if v0 < ṽ0, xt(v0) ≥ xt(ṽ0) for all t ≥ 0. It follows that,
for some sufficiently low v0, the right-hand side of (53) exceeds the left-hand
side.

For every optimization problem under consideration, there is some U by
which feasible values of the right-hand side of (53) are upper-bounded. So,
for v0 > U , the left-hand side of (53) exceeds the right-hand side.

The implicit function theorem gives us that xt is continuous in vt. (48)
then implies that v̇t is continuous in vt for all t, and thus that vt(v0), then
xt(v0), and then ultimately the right-hand side of (53) are is continuous in
v0 for all t. It follows from the intermediate value theorem that there exists
a v0 ∈ (v0, v0) for which (53) holds.



48

Uniqueness

Standard uniqueness results (e.g. Caputo (2005), Theorem 14.4 cited above)
do not immediately apply here, because the Lagrangian is linear, not strictly
concave, in the state variable S. Fortunately, this can easily be remedied
by defining the state variable to be e.g. S2 without affecting any conditions
necessary for the other results.

Uniqueness (among piecewise continuous x paths) also follows immedi-
ately from the observations that a path is optimal iff v0 attains its maximum
feasible value and that, given (44)–(47), v0 determines a unique path for
every variable.

A.2 Long-run gv and proof of Proposition 2

Long-run constancy of gv for all γ

Observe from (48) that, because v is the costate variable on S, it must follow
the law of motion

v̇t = (ρ+ δt)vt − u(Ct)

=⇒ gvt = ρ+ δ(At, xt)−
u(Atxt)

vt
. (54)

Let

β̃ ≡ β + γ − 1.

From (13), once xt is interior we have

xt = A
−α+γ−1

β̃

t

(
δ̄βvt

)− 1
β̃ . (55)

Substituting (55) into (54) yields

gvt = gv(vt, t) ≡

ρ+KA
(β−α)(1−γ)

β̃

t v
−β

β̃

t + 1
1−γ

v−1
t , γ ̸= 1;

ρ+ log
(
A

−β−α
β

t

(
δ̄βvt

)− 1
β
)
v−1
t , γ = 1,

(56)

where

K ≡ δ̄
− 1−γ

β̃
(
β
−β

β̃ − 1

1− γ
β
− 1−γ

β̃
)
.
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If γ > 1, recalling that vt monotonically increases and that At → ∞, the
central term of (56) vanishes. Also, in this case, v is upper-bounded, so it
approaches an upper bound v∗ by the monotone convergence theorem. So
limt→∞ gvt is defined, with

lim
t→∞

gvt = ρ+
1

v∗(1− γ)
. (57)

This limit cannot be positive, because v is upper-bounded, and it cannot be
negative, because v increases with time. So limt→∞ gvt = 0, and v∗ = 1

ρ(γ−1)
.

If γ < 1, then K < 0, and the central term of (56) grows in magnitude
without bound, fixing v. v must therefore also grow without bound, or else
gvt is eventually negative.

Now observe that

˙gvt = KA
(β−α)(1−γ)

β̃

t v
−β

β̃

t

((β − α)(1− γ)

β̃
g − β

β̃
gvt

)
− 1/vt

1− γ
gvt

=
(
gvt − ρ− 1/vt

1− γ

)((β − α)(1− γ)

β̃
g − β

β̃
gvt

)
− 1/vt

1− γ
gvt

= −β

β̃
g2vt +

((β − α)(1− γ)

β̃
g +

β

β̃
ρ+

1

β̃vt

)
gvt −

(
ρ+

1/vt
1− γ

)(β − α)(1− γ)

β̃
g.

This differential equation has two steady states, both positive. Since 1/vt →
0, the quadratic formula tells us that these steady states approach ρ and
g(β − α)(1 − γ)/β, with the former attractive and the latter repulsive. By
(19), ρ is higher, and is ruled out as a steady state by the transversality
condition (47). Then because the limits

lim
t→∞

ġv(gv, t) > 0 ∀gv ∈
((β − α)(1− γ)

β
g, ρ

)
,

lim
t→∞

ġv(gv, t) < 0 ∀gv <
(β − α)(1− γ)

β

are defined and continuous in gv, we must have

lim
t→∞

gvt =
(β − α)(1− γ)

β
g. (58)
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Otherwise we would have gv → −∞, ruled out by the monotonicity of v, or
gv → ρ, ruled out above.

The γ = 1 case is analogous to the γ > 1 case. Differentiating (56) with
respect to time yields ˙gvt strictly and continuously increasing in gvt from
−∞ at vt = 0 to ρ at vt = ∞. There is thus a unique, positive, and repulsive
“time-dependent steady state” value of gv (i.e. gv for which ġv(gv, t) = 0)
which declines to zero as t → ∞. The limits

lim
t→∞

ġv(gv, t) > 0 ∀gv > 0,

lim
t→∞

ġv(gv, t) < 0 ∀gv < 0

are defined and continuous in gv, and we must have

lim
t→∞

gvt = 0

to avoid gv → −∞ or gv → ∞.

Proof of Proposition 2

With the limiting behavior of gv pinned down, the asymptotic behavior of
the other variables follows straightforwardly. Substituting (58) for gvt into
expression (14) for gxt (and observing that the expression captures all γ ≤ 1)
produces

lim
t→∞

gxt = −α

β
g,

and adding αg then produces the limit of gAx = gC :

lim
t→∞

gCt =
β − α

β
g. (59)

For the hazard rate, rearrange (56) to get

vt =
u(Ct)

ρ+ δt − gvt
, (60)

and substitute (60) into (23) to get

δt =

{
ρ+δt−gvt

β
1−γ

1−Cγ−1
t

, γ < 1;
ρ+δt−gvt
β log(Ct)

, γ = 1.
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Solving for δt,

δt =


(ρ−gvt)(1−γ)

β
(
1−Cγ−1

t

)
−1+γ

, γ < 1;

ρ−gvt
β log(Ct)−1

, γ = 1.

In the γ < 1 case, the limit of gv (58) and C → ∞ from (59) imply

lim
t→∞

δt =
(ρ− (β − α)(1− γ)g/β)(1− γ)

β + γ − 1
.

In the γ = 1 case, substitute 0 for gvt and observe that, by (59),

lim
t→∞

Ct

e
β−α
β

gt
= C

for some C > 0, so that

lim
t→∞

δtt = lim
t→∞

ρ− gvt

β
(
log(Ct/e

β−α
β

gt) + log(e
β−α
β

gt)
)
/t− 1/t

= lim
t→∞

ρ

β log(C)/t+ (β − α)g − 1/t

=
ρ

(β − α)g
.

A.3 Proof of Proposition 3

Suppose that R∗ ≤ 1, and, by contradiction, that we do not have C∗ = ∞.
By the failure of C∗ = ∞, there is an increasing and unbounded sequence

of times, tn → ∞, such that Ctn ≤ C ∀n ≥ 1.
Consider the sequence of consumption levels nC ∀n ≥ 1. Since nC → ∞,

by R∗ ≤ 1 we have

lim
n→∞

R(nC) = lim
n→∞

lim
A→∞

∂δ

∂x

(
A,

nC

A

) (nC)γ

Aρ(γ − 1)
≤ 1. (61)

By D5, ∂δ
∂x
(A, x) weakly increases in x for any A. So

R(Ctn) ≤ R(nC)
(Ctn

nC

)γ

≤ R(nC)n−γ ∀n, (62)
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where the first inequality follows from the fact that nC ≥ Ctn for each n,
and the second follows from C ≥ Ctn for each n. By (61), R(nC)n−γ < 1 for
sufficiently large n, so by (62) and A3, there exists an n such that

∂δ

∂x

(
Atn ,

Ctn

Atn

) Cγ
tn

Atnρ(γ − 1)
< 1 ∀n > n.

Since vt cannot exceed
1

ρ(γ−1)
,

∂δ

∂x

(
Atn ,

Ctn

Atn

)
vtn < AtnC

−γ
tn ∀n > n.

This is compatible with optimality only if xtn = 1. But this is impossible for
sufficiently large n, since Ctn = Atnxtn ≤ C and limn→∞Atn = ∞.

Suppose that R∗ > 1 and, by contradiction, that C∗ = ∞. Then there is
some C such that R(C) > 1:

lim
A→∞

∂δ

∂x

(
A,

C

A

) Cγ

Aρ(γ − 1)
> 1.

So there is an A such that

∂δ

∂x

(
A,

C

A

) 1

ρ(γ − 1)
> AC−γ (63)

for all A ≥ A. Furthermore, because the left-hand side weakly increases in
C by D5 and the right-hand side strictly decreases in C, (63) holds for all
A ≥ A and C ≥ C. By A4, and the supposition that C∗ = ∞, there is a t
such that

∂δ

∂x

(
At,

Ct

At

) 1

ρ(γ − 1)
> AtC

−γ
t ∀t ≥ t. (64)

Finally, optimality requires

A1−γ
t x−γ

t ≥ ∂δ

∂xt

(
At, xt

)
vt ∀t

=⇒ (Atxt)
1−γ/vt ≥

∂δ

∂xt

(
At, xt

)
xt ≥ δ(At, xt),
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with the final inequality holding because, by D5, ∂δ
∂x
x ≥ δ. Given C∗ = ∞,

since vt is upper-bounded, it follows that δt → 0. With δt → 0 and Ct → ∞,
vt approaches its upper bound of 1

ρ(γ−1)
.

It therefore follows from (64) that, for sufficiently large t,

∂δ

∂x

(
At,

Ct

At

)
vt > AtC

−γ
t .

This is incompatible with optimality. Thus, if R∗ > 1, it is impossible that
C∗ = ∞.

A.4 Proof of Proposition 4a

It is optimal to set xt = 1 as long as, at x = 1, the marginal flow disutility
of decreasing x weakly exceeds the marginal expected utility of doing so via
decreasing the hazard rate:

A1−γ
t ≥ ∂δ

∂x
(At, 1) vt. (65)

It is optimal to set xt < 1 as long as (65) fails, maintaining

A1−γ
t x−γ

t =
∂δ

∂x
(At, xt) vt (66)

=⇒ xt = A
1−γ
γ

t

(∂δ
∂x

(At, xt) vt

)− 1
γ
. (67)

The uniqueness of the optimal path is shown in Appendix A.1.

Proof that limt→−∞ xt = 1

We will show that there exists a time t such that vt ≤ 0. It then follows
immediately that xt = 1 for t ≤ t.

Let

T ≡ A−1
(
(γ − 1)

1
1−γ

)
denote the time at which AT = (γ − 1)

1
1−γ , and at which therefore u(AT ) =

−1. If vT ≤ 0, the result follows immediately. Let us therefore assume that
vT > 0.
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For t < T ,

vt =

∫ ∞

t

e−ρ(s−t)−
∫ s
t δqdqu(Cs)ds

=

∫ T

t

e−ρ(s−t)−
∫ s
t δqdqu(Cs)ds + e−ρ(T−t)−

∫ T
t δqdqvT . (68)

Since u(Cs) ≤ u(As) ≤ −1 for s ≤ T , the first term of (68) is negative—
indeed, an integral over s of values which are negative for all s. The integral
is shrunk in magnitude when, for all s, u(Cs) is replaced with −1 and the
discount factor e−ρ(s−t)−

∫ s
t δqdq replaced with its minimum value across the

range, namely the discount factor at T . So

vt < (t− T + vT )e
−ρ(T−t)−

∫ T
t δqdq

=⇒ vT−vT < 0.

This proof admittedly “takes the model too literally”, in assuming that tech-
nology growth has always been exponential and that therefore life was not
worth living before some point in the past. Still, the dynamic it bluntly il-
lustrates should not be controversial. When γ > 1, proportional sacrifices in
consumption—decreases to x—carry greater utility costs the lower the base-
line consumption level is. Early in time, the discounted value of civilization
v and the baseline consumption level A were both low, so large sacrifices for
safety would not have been optimal.

Proof that limt→∞ xt = 0 if ηA is bounded above 1− γ

Generalizing (67), whether or not the xt ≤ 1 constraint binds we have

xt ≤ A
1−γ
γ

t

(∂δ
∂x

(At, xt) vt

)− 1
γ
. (69)

We will show that if ηA(·) is bounded above 1 − γ, the right-hand side has
an upper bound which falls to 0 as (by A3) At → ∞.

Because by D1 δ is positive, by D2 and D5 we have ∂δ
∂x
(At, xt) ≥ δ(At, xt).

The right-hand side is thus bounded above by

A
1−γ
γ

t

(
δ(At, xt)vt

)− 1
γ . (70)
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Fixing x and v, the elasticity of this upper bound with respect to A is (1−
γ − ηA(A, x))/γ. Since this is here bounded below 0, (70) tends to 0 as
A → ∞. Finally, vt is eventually positive, because by A4 A eventually
exceeds 1 (rendering vt > 0 feasible with x = 1 permanently), and vt does
not fall because sufficient precautions on new technology—e.g. banning its
use—allow the consumption path to be maintained without increasing risk,
by D4. Therefore, if ηA(·) is bounded above 1 − γ, maintaining optimality
condition (69) as At → ∞ requires xt → 0.

A.5 Proof of Proposition 5

If limk↓1 R̃(k) < 1, there is a k > 1 such that

lim
t→∞

∂δ

∂x

(
At,

t
k

γ−1

At

) t
kγ
γ−1

Atρ(γ − 1)
< 1. (71)

Choose k ∈ (1, k). Suppose that ∄t : Ct > t
k

γ−1 ∀t > t. Then there is an
increasing and unbounded sequence of times, {tn} → ∞, such that

Ctn ≤ t
k

γ−1
n ∀n ≥ 1. (72)

Observe that

lim
n→∞

∂δ

∂x

(
Atn ,

t
k

γ−1
n

Atn

) t
kγ
γ−1
n

Atnρ(γ − 1)

≤ lim
t→∞

∂δ

∂x

(
At,

t
k

γ−1

At

) t
kγ
γ−1

Atρ(γ − 1)
· t−

k−k
γ−1

γ = 0, (73)

where the inequality follows from the fact that, by D5, ∂δ
∂x
(A, x) weakly in-

creases in x, and the limit before the t−
k−k
γ−1

γ term is less than 1 by (71).
By (72), (73), and the fact that vt <

1
ρ(γ−1)

for all t, there is an n such
that, for all n ≥ n,

∂δ

∂x

(
Atn ,

Ctn

Atn

)
vtn < AtnC

−γ
tn .

This is compatible with optimality only if xtn = Atnxtn = 1. But this is
impossible for sufficiently large n, by (29) and (72).
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So for some k > 1,

∃t : Ct > t
k

γ−1 ∀t > t. (74)

So (74) holds for k = 1 as well.

Given (74) for some k > 1, we have, for some t and some k ∈ (1, k), that for
all t > t

(Atxt)
1−γ < t−k

=⇒ ∂δ

∂x
(At, xt)xt vt < t−k

=⇒ δtvt < t−k

=⇒ δt < t−k. (75)

The first implication follows from the fact that A1−γ
t x−γ

t ≥ ∂δ
∂x
(At, xt)vt

whether or not x is interior. The second follows from the fact that δ < ∂δ
∂x
x

by D1 and D5. The third follows from the fact that vt is eventually positive
and does not fall to zero.

δt is uniformly bounded from 0 to t by maxA∈[A0,At] δ(A, 1), which exists
and is finite by the continuity of δ(·) (D3). It follows from this and from
(75) that S∞ > 0.

If limk↑1 R̃(k) > 1, there is a k < 1 and an s such that

∂δ

∂x

(
At,

t
k

γ−1

At

) t
kγ
γ−1

Atρ(γ − 1)
> 1 ∀t > s. (76)

Suppose by contradiction that ∄t : Ct < t
1

γ−1 ∀t > t. Then there is an
increasing and unbounded sequence of times, {tn} → ∞, such that

Ctn ≥ t
1

γ−1
n ∀n ≥ 1. (77)

Observe that

lim
n→∞

∂δ

∂x

(
Atn ,

t
1

γ−1
n

Atn

) t
γ

γ−1
n

Atnρ(γ − 1)

≥ lim
t→∞

∂δ

∂x

(
At,

t
k

γ−1

At

) t
kγ
γ−1

Atρ(γ − 1)
· t

1−k
γ−1

γ = ∞, (78)
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where the inequality follows from the fact that, by D5, ∂δ
∂x
(A, x) weakly in-

creases in x, and the limit before the t
1−k
γ−1

γ term is greater than 1 by (76).
By (77), (78), and the fact that vt ̸→ 0, there is an n such that

∂δ

∂x

(
Atn ,

Ctn

Atn

)
vtn > AtnC

−γ
tn .

This is incompatible with optimality. So

∃t : Ct < t
1

γ−1 ∀t > t. (79)

By (79) and (29), xt → 0. So there exists a t ≥ t such that, for all t > t, the
choice of x is interior

∂δ

∂x
(At, xt)vt = A1−γ

t x−γ
t

and so, by (79),

∂δ

∂x
(At, xt)xt vt = C1−γ

t > 1/t.

Since ηx ≡ ∂δ
∂x

x
δ
,

ηx(At, xt)δ(At, xt) vt > 1/t ∀t ≥ t.

Recall that an interior choice of xt implies that vt > 0, that v is upper-
bounded by 1

ρ(γ−1)
, and that δt > 0 by D1. So ηx > 0 ∀t ≥ t. So if ηx is

upper-bounded by ηx,

δ(At, xt) >
ρ(γ − 1)

ηx
· 1
t

∀t ≥ t.

So S∞ = 0.

A.6 Proof of Proposition 6

Recalling that Ã0 = A0,

X
(
Ã(·)

)
=

∫ ∞

A0

˙̃A−1
A δ

(
A, xA[Ã(·)]

)
dA,

X
(
A(·)

)
=

∫ ∞

A0

Ȧ−1
A δ

(
A, xA[A(·)]

)
dA.
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Since Ã(·) is an acceleration to A(·), there is a τ > 0 such that ˙̃AA = ȦA

and xA[A(·)] = xA[Ã(·)] for all A > Ãτ .

If X
(
A(·)

)
< ∞,

X
(
A(·)

)
−X

(
Ã(·)

)
=

∫ Ãτ

A0

(
Ȧ−1

A δ
(
A, xA[A(·)]

)
− ˙̃A−1

A δ
(
A, xA[Ã(·)]

))
dA

(80)

and ˙̃AA > ȦA for A ∈ (A0, Ãτ ).
At any technology level A, any subsequent time-path of hazard rates

feasible given A(·) is feasible with weakly higher consumption levels given
Ã(·), by D5. So vA[Ã(·)] ≥ vA[A(·)] for all A. So, since

xA[Ã(·)] =

1, A1−γ ≥ ∂δ
∂x
(A, 1)vA[Ã(·)];

A
1−γ
γ

(
∂δ
∂x
(A, xA[Ã(·)])vA[Ã(·)]

)− 1
γ
, otherwise,

since xA[A(·)] is defined likewise, and since ∂δ
∂x
(A, x) weakly decreases in x

by D5, we have xA[Ã(·)] ≤ xA[A(·)] for A ∈ (A0, Ãτ ) (indeed for all A).
It follows from D1, D2, and D5 that δ(·) weakly increases in x. Thus

Ȧ−1
A δ

(
A, xA[A(·)]

)
> ˙̃A−1

A δ
(
A, xA[Ã(·)]

)
for all A ∈ (A0, Ãτ ), and (80) is

positive.

If τ < ∞, (80) finite. So if X(A(·)) = ∞ and τ < ∞, X(Ã(·)) = ∞.

If X(A(·)) = ∞ and τ = ∞, it will suffice to find an example under which
X(Ã(·)) is finite and an example under which it is infinite. We have already
encountered both.

For a case in whichX(Ã(·)) = ∞, consider the hazard function δ(At, xt) =
δ̄(Atxt)

α, discussed following Proposition 5. As discussed there, cumulative
risk is then infinite for any technology path eventually bounded above zero.

For a case in which X(Ã(·)) < ∞, consider hazard function (2)—

δ(At, xt) = δ̄Aα
t x

β
t —with A(t) = tk, Ã(t) = tk̃ for t ≥ 0, where

k ≤ β + γ − 1

(α− β)(γ − 1)
< k̃.

As explained in Section 4.2, under “Growth effects”, X(A(·)) = ∞ and
X(Ã(·)) < ∞.
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A.7 Safety in redundancy, from discrete to continuous

Suppose a unit of production carries a constant flow probability δ̄ of triggering
an existential catastrophe, so that, in the absence of any safeguards, the
probability that it does not trigger a catastrophe after s units of time is e−δ̄s.
To be consistent with the discrete-time specification that the probability that
it triggers a catastrophe after 1 unit of time equals p, we have 1 − e−δ̄ = p
and thus δ̄ = − log(1− p).

With 1−xt

xt
units of safeguards maintained around t, since each unit mul-

tiplies the probability of a catastrophic failure per unit time by a factor
b̃ ∈ (0, 1), we have that the probability that a catastrophe is avoided until

t+ s equals e−δ̄b̃
1−x
x s.

The probability that Atxt equally-safeguarded units of production all
avoid catastrophe until t+ s is thus

(
e−δ̄b

1−xt
xt s

)Atxt
= e−δ̄b

1−xt
xt Atxt s. (81)

So the probability of a catastrophe by s given locally constant A, x equals
1-(81), and the hazard rate—the probability of catastrophe per unit time—at
time t precisely is

δt ≡ lim
s→0

(
1− e−δ̄b

1−xt
xt Atxt s

)
/s = δ̄Atxtb̃

1−xt
xt .

Letting b ≡ − log(b̃) > 0 yields

δt = δ̄Atxte
−b

1−xt
xt .

A.8 Proof of Proposition 7

By Appendix A.1, there is a unique optimal path. By the reasoning following
(8), the optimal choice of x is 1 until the (unique) time at which

∂u

∂xt

(At, xt) =
∂δ

∂xt

(At, xt) vt, (82)

at xt = 1, after which the optimal choice of xt is interior and maintains
equality (83).
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Differentiating the utility function and hazard function (35), we have

A1−γ
t x−γ

t = δ̄Ate
−b

1−xt
xt

(
1 +

b

xt

)
vt

=⇒ 1

vt
= δ̄Aγ

t e
−b

1−xt
xt

(
xγ
t + bxγ−1

t

)
. (83)

Because vt increases monotonically and is upper-bounded, it is asymptot-
ically positive and constant, by the monotone convergence theorem.

We must have Ct → ∞. If we do not, then there is a unbounded sequence
of times tn and a consumption level C such that

xtn ≤ C/Atn ∀n. (84)

Substituting (84) into (83), and recalling that Atn → ∞, this would imply
that the right-hand side of (83) tends to 0 across {tn}, and thus that it is
not asymptotically positive.

From (83),

1

vt
= δtC

γ−1
t (1 + b/xt).

Since Cγ−1
t → ∞, xt cannot be negative, and 1/vt ̸→ ∞, it follows that

δt → 0.
Since Ct → ∞ and δt → 0, vt → 1

ρ(γ−1)
.

Divide both sides of (83) by δ̄Aγ
0 , and take the log and then the limit. With

κ ≡ log
(
A−γ

0

1

ρ(γ − 1)δ̄

)
,

we have

lim
t→∞

[
gγt− b

1− xt

xt

+ log
(
xγ
t + bxγ−1

t

)]
= κ

=⇒ lim
t→∞

xt

1− xt

t = lim
t→∞

b

gγ − κ/t+ log
(
xγ
t + bxγ−1

t

)
/t
.

Other than gγ, the terms in the denominator on the right-hand side must
converge to 0. This would be avoided only if there were an unbounded
sequence of times tn across which xtn grew at least exponentially with time,
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which is impossible, or shrank at least exponentially with time, which would
send the right-hand side of (83) to zero. So

lim
t→∞

xt

1− xt

t =
b

gγ

=⇒ lim
t→∞

xtt = lim
t→∞

(1− xt)
b

gγ
=

b

gγ

=⇒ lim
t→∞

xt
gγ

b
t = 1,

since xt → 0. It then follows from the hazard function that, in the limit, δ
falls to 0 at exponential rate −g(γ − 1) < 0.

B Transition dynamics for simulations

For simulating the transition dynamics, it is helpful to find ẋt and δ̇t as
functions of t and xt in the regime where x is interior.

Hazard function (2), used throughout Sections 2–4 and used to simulate
Figures 1 and 2, is the special case of hazard function (33), used to
simulate Figure 3, with ϵ = 1. The calculations below therefore apply to all
simulations.

FOC:

∂u

∂xt

(At, xt) =
∂δ

∂xt

(At, xt)vt

=⇒ A1−γ
t x−γ

t = δ̄Aα
t x

β−2
t

(
(β − 1)

(
1− (1− xt)

ϵ
)
+ ϵxt(1− xt)

ϵ−1
)
vt.

Rearranging and differentiating gives

vt =
1

δ̄

A1−γ−α
t x2−γ−β

t

(β − 1)
(
1− (1− xt)ϵ

)
+ ϵxt(1− xt)ϵ−1

(85)

=⇒ v̇t = vt

(
(1− γ − α)g + (2− γ − β)

ẋt

xt

(86)

− ϵ
β − (ϵ+ β − 1)xt

(β − 1)(1− xt)1−ϵ + 1− β + (ϵ+ β − 1)xt

ẋt

1− xt

)
.
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From the first-order condition with respect to the state variable St,

v̇t = vt(ρ+ δt)− u(ct)

= vt

(
ρ+ δ̄Aα

t x
β−1
t (1− (1− xt)

ϵ)
)
− (Atxt)

1−γ − 1

1− γ
. (87)

Substituting (85) into (86) and (87), setting the results equal, and solving
for ẋt yields

ẋt = xt

(
(β − 1)(1− xt)

1−ϵ + 1− β + (ϵ+ β − 1)xt

)
(1− xt)(

(2− γ − β)
(
(β − 1)(1− xt)

1−ϵ + 1− β

+ (ϵ+ β − 1)xt

)
(1− xt)− ϵ(β − (ϵ+ β − 1)xt)xt

)−1

(
ρ+ δ̄Aα

t x
β−1
t (1− (1− xt)

ϵ)− g(1− α− γ)− (88)

(Atxt)
1−γ − 1

1− γ
δ̄Aα+γ−1

t xβ+γ−2
t

(
(β − 1)(1− (1− xt)

ϵ) + ϵxt(1− xt)
ϵ−1

))
.

Differentiating the hazard function (33) with respect to t yields

δ̇t = δ̄Aα
t x

β
t

1− (1− xt)
ϵ

xt

(
αg + (β − 1)

ẋt

xt

+ ϵ
(1− xt)

ϵ

1− (1− xt)ϵ
ẋt

1− xt

)
. (89)

Scripts for replicating Figures 1, 2, and 3 using (88) and (89),
and the estimate of S∞ following Figure 1, are provided here:
https://philiptrammell.com/static/ERAG code.zip.

https://philiptrammell.com/static/ERAG_code.zip
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