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I banged this out in about two days (with a few minor edits since), and would definitely
call it a “work in progress” except that I don’t expect to keep seriously working on
it. If you want to try polishing and publishing it, or know anyone who might, let me
know!

1 Introduction

Faced with a set of possible acts among which to choose, one may have normative
uncertainty: uncertainty about how [morally] “choiceworthy” each act is. Under this
uncertainty, one may wish to choose an act that maximizes expected choiceworthi-
ness.

In particular, it has been argued that if your behavior under normative un-
certainty does not amount to something that can be modeled as “maximizing ex-
pected choiceworthiness” across moral theories, then your behavior will have var-
ious undesirable features (MacAskill et al., 2020, ch. 2). These arguments, as far
as I’m aware, are generally analogous to standard arguments—e.g. the classic von
Neumann–Morgenstern (1944) arguments—for maximizing expected utility more
generally (with respect to some utility function).

To maximize expected choiceworthiness, however, it is not enough to (a) assign
probabilities to all possible moral theories and (b) know all there is to know about
the internal structure of how each theory evaluates possible acts. One must also have
a way of putting the choiceworthiness claims made by one theory on the same scale as
those made by another. To use the jargon, one must be able to make “intertheoretic
comparisons”.

This seems hard. Suppose a1 is the act of telling a harmless lie to create some
amount of welfare and a0 is the act of staying silent. We can straightforwardly
understand that utilitarianism considers a1 more choiceworthy than a0. We can
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likewise straightforwardly understand that a view that intrinsically values honesty
might consider a0 more choiceworthy than a1. That is, we can straightforwardly
understand what I have called theories’ “internal structures”. But how are we
supposed to compare the size of the gap between a0’s choiceworthiness and a1’s
choiceworthiness according to utilitarianism with the size of this gap according to
the other theory?

One proposed approach is “variance normalization”. This constitutes scaling the
theories’ sets of choiceworthiness claims, regarding the sets of acts under considera-
tion, so that each theory’s set of scaled claims has the same variance. This approach
has some desirable features that some other approaches lack (Cotton-Barratt et al.,
2020; MacAskill et al., 2020, ch. 4).

But variance normalization is not in general compatible with a Bayesian approach
to maximizing expected choiceworthiness. One may have a prior over the distribu-
tions of choiceworthiness claims one will encounter in a given situation such that,
upon Bayes-updating on the “internal structure” of each theory’s choiceworthiness
claims about the acts one does encounter, one’s posterior distributions do not have
the same variance. This is illustrated in §4.

As a result of this departure from Bayesianism, variance normalization has
its own undesirable features. Indeed, as Savage (1954) in essence shows—though
we will not expand on this here—departures from Bayesianism have undesirable
features largely analogous to the undesirable features of departures from expected
utility maximization highlighted by VNM. There is therefore an especially strong
tension between the case for maximizing expected choiceworthiness under normative
uncertainty and the case for variance normalization.

Note that the objections raised here apply to all prior-free “statistical normalization
methods”, to use the term introduced by Cotton-Barratt et al. (2020), not just
variance normalization. We will focus on variance normalization because it is the
statistical normalization method that has received the most attention to date.

Finally, note the analogy (also made in the sources cited above) to interpersonal
comparisons of utility. You might believe that alternatives offer people underlying,
interpersonally comparable “utility” levels (or perhaps it would be better to say
“welfare” levels), but that all you ever observe is cardinal information about how
people rank alternatives and the relative sizes of the gaps they place between them
(e.g. on the basis of how they rank gambles). If so, everything said here about
intertheoretic comparisons of choiceworthiness applies just as well to interpersonal
comparisons of utility.

In any event, the structure of this note is as follows. §2 introduces a simple framework
that we will use to distinguish Bayesian from non-Bayesian approaches to interthe-
oretic comparisons, at least under some stylized circumstances. (It is hopefully rel-
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atively clear how a more general framework could model intertheoretic comparisons
under more general circumstances.) §3 shows that, within this framework, variance
normalization is Bayesian as long one’s prior is that theories’ choiceworthiness claims
about the possible acts at hand are drawn i.i.d. from a normal distribution. §4 shows
that, within this framework, variance normalization is not Bayesian in general.

2 Framework

You assign probability p to moral theory T1 and probability 1 − p to moral theory
T2. There are n > 1 acts available to you. Your prior is that the choiceworthiness
claims made by each theory for each act are independently drawn from a common,
non-degenerate distribution D over the real numbers.

You would like to maximize expected choiceworthiness across the moral theories.
However, you only learn the theories’ choiceworthiness claims up to affine transfor-
mation. To illustrate what this means, suppose you face three acts, labeled a1, a2,
and a3. Instead of knowing that T1 assigns these acts choiceworthiness values of
(say) v1,1 = 8, v1,2 = 10, and v1,3 = 2 respectively, you only learn that T1 ranks the
acts a2 ≻ a1 ≻ a3 and that the gap T1 places between a2 and a1 is four times the gap
T1 places between a1 and a3. Or, put another way, you only learn that there is some
A and some B > 0 such that v1,1 = A+ 8B, v1,2 = A+ 10B, and v1,3 = A+ 2B.

Your approach to maximizing expected choiceworthiness will be called Bayesian
if it amounts to maximizing the expected value of the posterior implied by your
prior and a Bayesian update on what you learn.

For clarity, we can imagine that this is what you know has happened:

• A list of n independent draws was taken from D. Let us denote this list
V ≜ (v1, ..., vn). The draws, i.e. the elements of V , were not all equal.

• For each draw i, an act “ai” was found that has objective moral choiceworthi-
ness of vi.

• Let V̂ ≜ (v̂1, ..., v̂n) be a normalization of V that preserves only cardinal in-
formation about the original draws and not information about their absolute
level or scale. For example, perhaps

v̂i =
vi −min(V )

max(V )−min(V )
, (1)

in which case the normalized draws all have a maximum value of 1 and a
minimum value of 0.

With probability p, the normalized list V̂ was put on a table labeled Table 1.
Otherwise, it was put on Table 2.
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• A second list of n independent draws, not all equal, was taken from D. We
will call the claim-list represented by these draws the “false moral theory”. It
was normalized in the same way as above and placed on the other table.

When you come across the tables, what is the expected choiceworthiness, for you, of
each of the n acts?

If you are a Bayesian, the expected choiceworthiness of act ai, in light of what
you have learned, is (p times the expected choiceworthiness of ai conditional on T1

being true) + (1−p times the expected choiceworthiness of ai conditional on T2 being
true). So you just need to work out the expected choiceworthiness of ai conditional
on each theory.

Some final notation: vt,i will denote the the claim about ai made by the theory
“on table t”, and v̂t,i will denote the normalized claim actually “found on table t”.

The lists Vt and V̂t will be defined analogously. So our goal is, for each i and t, to
determine E[vt,i|V̂t].

3 Variance normalization is Bayesian given a nor-

mal prior

If D is normal, the variance of E[Vt|V̂t] ≜ (E[vt,1|V̂t], ...,E[vt,n|V̂t]) is independent of

V̂t. Variance normalization is therefore Bayesian. Here is a proof sketch.

Suppose D = N(µ, σ).
First, to learn that Vt is some affine transformation of V̂t is to learn that Vt lies

on the open half-plane in Rn whose edge passes through the origin and which is
spanned by 1n—the n-vector of ones—and positive multiples of V̂t. The edge of this
half-plane is the “identity line”: the line spanned by 1n. All possible observations
V̂t thus consist of open half-planes whose edges pass through the point at the center
of the multivariate normal distribution: µ1n.

Now note that the probability density of a particular list Vt of n independent
draws from N(µ, σ) depends only on the absolute distance of Vt from this center
point. E[Vt|V̂t] will therefore be a point on the half-plane characterized by V̂t that
equals µ1n plus a vector orthogonal to 1n that is the same distance from µ1n re-
gardless of what half-plane we are on. This distance will be the expectation of a
half-normal distribution, namely σ

√
2/π.

Finally, the variance of the coordinates of a point (such as E[Vt|V̂t]) equals the
squared distance of the point from the identity line. Since the nearest point on the
identity line to E[Vt|V̂t] is µ1n, the variance of E[Vt|V̂t] equals 2σ

2/π regardless of V̂t.

As this approach shows, variance normalization is Bayesian given any joint prior over
Vt that is symmetric about a single point on the identity line. We might have the
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prior that Vt is drawn from the unit n-sphere, for instance.
If the draws of vt,i are independent draws, across i, from some distributionD, then

this symmetry is guaranteed if D is normal. I am not sure whether it is guaranteed
only if D is normal.

Maxwell’s Theorem gets us part of the way to an “only if”. It tells us that the
joint distribution of n independent random variables is symmetric with respect to
all rotations about some point µ⃗ ∈ Rn iff the random variables are all normally
distributed with means {µi} and a common variance. Here, since we are assuming
that the random variables are identically distributed, µ⃗ = µ1n for some scalar µ.

Maxwell’s Theorem doesn’t get us all the way to an “only if”. This is because,
to justify variance normalization, what we need is weaker than full symmetry about
µ1n, in two ways. First, we only need to consider rotations around the identity line,
not all rotations around µ1n. Second, we only need the variance of the coordinates
of the mean of the half-plane to be rotation-independent, rather than the whole
distribution on the half-plane to be rotation-independent.

Nevertheless, my guess is that normality is necessary for variance normalization
to be Bayesian in the above framework. If I show that it is—or, more generally, if
I characterize the prior under which the relevant symmetry holds—I’ll add that in
here. (Either way, I expect this is something already well-known in statistics.) In
any event, variance normalization is certainly not Bayesian in general, as we will
now show.

4 Variance normalization is not Bayesian in gen-

eral

Suppose D = U [0, 1] and n = 3. Suppose both theories rank the three acts such that
vt,2 > vt,1 > vt,3, but v1,1 − v1,3 = 2(v1,2 − v1,1) whereas v2,1 − v2,3 = v2,2 − v2,1.

Let us consider the case geometrically. Our prior over V1 is a uniform
distribution over the unit cube, [0, 1]3. Learning V̂1—i.e. learning that
v2,1 − v2,3 = 2(v2,2 − v2,1) > 0—informs us that we lie in the triangle with
vertices (0, 0, 0), (2

3
, 1, 0), (1, 1, 1). The projections of this triangle onto all three

planes that pass through the axes look like this:
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From here it is straightforward to calculate that the posterior expectations of v1,1,
v1,2, and v1,3 are 5/9, 2/3, and 1/3, respectively.

Our prior over V2 is also a uniform distribution over the unit cube, [0, 1]3. Learn-
ing V̂2—that v2,1 − v2,3 = v2,2 − v2,1 > 0—informs us that we lie on the triangle with
vertices (0, 0, 0), (1

2
, 1, 0), (1, 1, 1). The side projections of this triangle on all three

dimensions look like those above, but with 1/2 in place of 2/3 in the first and second
projections. The posterior expectations of v2,1, v2,2, and v2,3 are 1/2, 2/3, and 1/3,
respectively.

The variance of (5/9, 2/3, 1/3) is around 0.0288. The variance of (1/2, 2/3, 1/3)
is different: around 0.0278.
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