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Abstract

I explore the implications of time preference heterogeneity for public good
funding. I find that the assumption of a common discount rate is knife-
edge: allowing for time preference heterogeneity produces substantially dif-
ferent funding behavior in equilibrium. In particular I find that, across a
variety of circumstances, patient funders invest, rather than spend, the en-
tirety of their resources for substantial lengths of time in equilibrium. I also
find that the implications of this departure from the common-discount-rate
case are economically significant, in that the patient payoff to spending in
equilibrium, relative to that of spending according to an intermediate time
preference rate, can grow arbitrarily large as a patient funder’s share of initial
funding goes to zero. Finally, I discuss applications of these results to the
timing of philanthropic spending, and to patient philanthropists’ willingness
to pay to avoid legal disbursement minima.
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1 Introduction

The modern literature on public good contribution games begins with Bergstrom et
al. (1986). Bergstrom et al. observed that well-behaved static public good contribu-
tion games feature a unique equilibrium allocation of resources to particular public
goods, in which each individual is indifferent to marginal reallocations of resources
among the goods she herself funds and weakly prefers reallocations to goods she
funds from goods she does not. Even individuals with relatively similar preferences
thus typically find themselves “polarized”, in the sense that they fund entirely or al-
most entirely non-overlapping sets of projects. Similar observations have been made,
seemingly independently, on other occasions: see e.g. Kalai and Kalai (2001).

There is now an extensive literature on dynamic public good contribution games
as well. A central concern of this literature is efficiency: that is, roughly, determin-
ing when the threats made possible by repeated interaction can induce players to
avoid free-riding on each other’s contributions, substituting public good spending for
spending on private consumption. It is well understood that in a simple continuous-
time model under perfect monitoring, fully efficient spending schedules can obtain
in subgame-perfect equilibrium, since the gains from deviation are infinitesimal rela-
tive to the losses from future punishments. As a result, authors have explored a vast
array of modifications to the simple model, including imperfect monitoring, shocks,
and investment irreversibility.

Despite its size, however, the literature on dynamic public good contribution
games near-universally assumes that the actors under consideration are equally
patient: i.e. that they act under a common discount rate. This common-discounting
assumption is pervasive both in the theoretical literature and in applied work on
the dynamic provision of public goods, such as country-level efforts to mitigate
climate change; see e.g. Ferrari et al. (2015) or Dutta (2017). Fishman (2019)
explores bargaining over public good provision in a dynamic setting where the
players use different discount rates, and a small literature building on Sorger
(2006) likewise explores the implications of bargaining under time preference
heterogeneity in dynamic settings, some of which could apply to public good
provision problems. Finally, the only other paper on the theory of public good
contribution games even to mention time preference heterogeneity, of which I am
aware—and so the only paper to do so outside a bargaining context—is Jacobsen et
al. (2017), but it is set in a static environment: lower time preference, i.e. greater
concern for the future, is simply listed as one reason why individuals may have
different preferences regarding the provision of an environmental good in the present.

A deeper analysis of dynamic public good provision under time preference hetero-
geneity is valuable, I will argue, for at least two reasons.

First, individual rates of time preference vary widely.1 Most developed-world gov-

1A helpful review of the econometric and experimental literature on time preference heterogene-
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ernments publish discounting guidelines that make explicit the discount rates they
use in cost-benefit analysis for public policy, revealing unambiguously that they too
act under heterogeneous rates of time preference.2 Economists’ recommendations of
time preferences to use in social discounting differ substantially.3 Philanthropists’
time preferences appear to vary as well, both with each other and with those of indi-
viduals and policymakers. Of course, individuals, policymakers, and philanthropists
all regularly contribute to public goods to which other such parties also contribute,
and these parties must all decide how to allocate their contributions over time. In
doing so, they participate in dynamic public good contribution games. Real-world
dynamic public good contribution games likely, therefore, exhibit substantial time
preference heterogeneity. Our attempts to model these games, and improve public
good provision processes in light of them, will likely fail if we do not account for it.

Second, in practice, many individuals currently hold philanthropically-purposed
assets in tax-exempt vehicles where they are earmarked for future charitable giving,
such as DAFs. Assets in DAFs in particular, in the United States, currently total
almost $150 billion; contributions to them have historically grown at a substantially
higher rate than charitable contributions as a whole; and disbursements have not
risen as quickly as contributions (National Philanthropic Trust, 2020). As we will
see, this pattern can straightforwardly be explained as rational behavior by patient
philanthropists given “over-spending” (from their perspective) by less patient other
parties. Nevertheless, it is routinely criticized as an unjustifiable withholding of
charitable funds, or even as a form of tax evasion. These criticisms have recently
reached new prominence in the United States with the June 2021 introduction of the
Accelerating Charitable Efforts (“ACE”) Act by Senators Angus King and Charles
Grassley, which would impose disbursement requirements on DAFs, effectively
requiring their contributors to act less patiently. Due to a lack of literature on
dynamic public good provision under time preference heterogeneity, the implications
of such a requirement, and of similar proposals to introduce or raise charitable
disbursement minima in the United States and elsewhere, have not undergone
thorough economic scrutiny.

This paper therefore begins more seriously to explore the implications of time pref-
erence heterogeneity for the dynamic provision of public goods. To do so, I use a
simple model in which there is a single public good, and the utility produced by
spending on it is isoelastic in total flow spending on it. Players with constant but
different rates of time preference make decisions about how much to contribute to
the good, and how much to invest for future contribution, over an infinite horizon in
continuous time.4

ity among individuals and households can be found in Alan and Browning (2010), pp. 1252–3.
2Compare US Office of Management and Budget (2019) and HM Treasury (2020), for instance.
3As surveyed by Drupp et al. (2018).
4I use roughly the notation and framework for dynamic optimization problems and games in
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To highlight the implications of time preference heterogeneity per se, I assume
that the size of each player’s total contribution budget is fixed. Contributors decide
only the schedule on which to deploy their spending, not the extent to which they
will spend on public as opposed to private goods each period. As a result, the model
does not resemble the existing literature on dynamic public good provision so much
as Bergstrom et al.’s original paper. The relevant change is that I explore what
happens when individuals choose their contribution levels for an infinite stream of
public goods over which their respective preferences differ—i.e. funding at t, for all
t ≥ 0—in sequence, rather than simultaneously. (I sometimes refer to the public
good contributors as “philanthropists”, and focus on applications to philanthropy,
but the mathematical results are applicable to decentralized public good contributors
more generally.)

The model, despite its simplicity, allows us to draw some important and broad
conclusions about the implications of heterogeneous discounting for public good
provision. First, the common discounting assumption is a knife-edge condition: even
slight differences in patience, even (indeed especially) by small (i.e. poorly-funded)
players, give rise to very different equilibria. In particular, they can give rise to
relatively simple and natural equilibria in which spending is “polarized” in the
sense given above, with impatient parties exclusively responsible for public good
funding before some future date and patient parties exclusively responsible after.
Second, this knife-edge condition is payoff-relevant: the equilibria that obtain
under heterogeneous discounting can offer payoffs, at least for unusually patient
parties, which differ dramatically from the payoffs they achieve under common
discounting. Third, and relatedly, disbursement requirements can reduce the payoff
to philanthropy dramatically, from a patient perspective.

Besides the literature on public good provision in static settings, and in dynamic
settings under homogeneous time preferences, I will now briefly discuss connections
to adjacent strands of literature which do not directly concern public good provision
but in which the implications of time preference heterogeneity have been explored
more extensively.

One such strand concerns the collective allocation of private consumption over
time—i.e., under certain preference aggregability assumptions, the discounting be-
havior of a representative agent—in a population of individuals or lineages with
heterogeneous time preferences. One classic observation from this literature is that
consumption (Rader, 1981) and/or wealth (Becker, 1980; Ryder, 1985) can, in the
limit, become entirely concentrated in the hands of society’s most patient members,
simply because they consume less and invest more. Another, closely related, as
shown in an exchange economy by Gollier and Zeckhauser (2005) (and with varia-

continuous time presented by Simon and Stinchcombe (1989) and Stinchcombe (2013), and as
summarized in Appendix A.
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tions elsewhere), is that a representative agent (if one exists) will, under complete
markets, exhibit a discount rate that declines with time to that of society’s most pa-
tient members. In other words, interest rates fall as patient parties lend to their less
patient counterparts and command an ever-growing share of the financial market.
As we will see, similar dynamics play out among agents spending on public goods,
and the effects are often even more extreme.

A second body of relevant research concerns optimal taxation by policymakers
more patient than their constituents. Farhi and Werning (2007, 2010) analyze opti-
mal taxation in an intergenerational model where individuals save insufficiently, from
the patient social planner’s perspective, for their descendants. Household consump-
tion, in these models, is effectively a public good: a good whose provision satisfies
the preferences of multiple parties (the policymaker and the household itself) nonex-
cludably and nonrivally. Similarly, von Below (2012), Belfiori (2017), and Barrage
(2018) study optimal carbon taxation and/or investment subsidization in contexts
where present production confers both future costs and future benefits (from cli-
mate damage and capital accumulation respectively). An important lesson from
this literature is that patient policymakers might like to invest resources for future
spending, but that to avoid crowding out private investment, it is often optimal for
them instead to subsidize private investment and tax private consumption.

Time preference heterogeneity has different implications in the context of optimal
taxation than in the context of private spending on public goods, however. The for-
mer setting involves an asymmetry in the players’ strategy sets: households cannot
tax or subsidize policymakers, but policymakers can tax and subsidize households. At
least in the absence of political or informational constraints, policymakers endorsing
a given time preference rate can often use these tools to implement population-wide
behavior that is optimal or near-optimal from the policymaker’s perspective. Finally,
therefore, a literature has emerged on the implications of time preference heterogene-
ity among more symmetrically empowered agents, who must collectively set discount
rate policy for use in public good provision. Gollier and Zeckhauser (2005), as noted
above, find conditions under which a group of agents with heterogeneous time pref-
erences give rise to a representative agent whose time preferences are determined by
the intertemporal allocation of private consumption, and the corresponding interest
rate schedule, that clears the agents’ financial contracts. As Heal and Millner (2014)
argue, there is a natural sense in which policymakers aiming to set discounting policy
for the provision of a public good, while deferring to the time preferences of their
constituents, do best to defer to this aggregated discounting schedule.

Finally, an alternative approach to collective social discounting is to consider,
in a social-choice-theoretic framework, the decision-making of committees of social
planners with different rates of time preference. Such an approach, however,
faces varieties of the preference aggregation impossibilities faced in other social
choice contexts, as explored in detail by Chambers and Echenique (2018). Millner
(2020) proposes a method by which the discounting planners might reach a kind of
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consensus, but such proposals are themselves inevitably vulnerable to disagreement.
The social choice approach to discounting must also confront the issue of time
inconsistency. In particular, Jackson and Yariv (2015) show that any social welfare
function used in this setting must be either dictatorial or time-inconsistent, in
that future committee meetings will, if they use the same forward-looking social
welfare function, decide to revise the plans made by previous meetings—at least
if these were made naively, without taking the possibility of future revisions into
account. Millner and Heal (2018) therefore examine the collective decision-making
of discounting committees aware that they are playing a dynamic game with their
future selves. One finding is that attempts to implement “weighted utilitarian”
social discounting in such a dynamic game will generally be inefficient. (By contrast,
I find that decentralized private actors strategically allocating public good con-
tributions over time can implement efficient, weighted utilitarian social discounting.)

The structure of this paper is as follows.
I begin in §2 with the benchmark scenario in which the good has only a single

funder. Barring certain technicalities, the spending schedule obtaining in this case
is the same as that which obtains given multiple funders with a shared rate of time
preference.

In §3, I explore the interaction between a patient and an impatient philanthropist.
I open by discussing, as a second benchmark, what follows when one party is “warm-
glow”, in the sense of Andreoni (1990) that he is concerned only with his own schedule
of contributions to the public good, whereas the other party is “altruistic”, in that she
cares about the schedule of total contributions. Modeling both parties as altruistic is
most standard in the literature on public good contribution games, but I open with
a discussion of warm-glow behavior both because it is a widely documented pattern
of philanthropic behavior in practice and because it serves as a simple introduction
to the nature of the parties’ interactions.

I then discuss the interaction between altruistic funders across a sequence of
increasingly complex game specifications: one in which the parties simultaneously
commit to a spending schedule; one in which the impatient party commits to a
spending schedule and the patient party then chooses his best response; and finally
one, ultimately of most interest, in which the parties play a dynamic game, choosing
strategies that govern their spending rates at each point in time as a function of
the joint contribution history up to that time. I find that every game specification
produces a unique and Pareto-inefficient equilibrium, except the last, which produces
many equilibria of which some are efficient and some are not. I also find that there
is a sense in which the impatient party has an advantage in the dynamic game,
relative to her status in the game with simultaneous commitment, analogous to the
first-mover advantage she enjoys in the second game specification with altruistic
funders.

In §4, I highlight the economic significance of time preference heterogeneity by
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estimating a funder’s willingness to pay to move from spending his budget according
to a schedule that is optimal given an alternative time preference rate to spending his
budget according to the schedule that is optimal given his own time preference rate,
even though doing so may induce an inefficient heterogeneous-discounting equilib-
rium. I find that, for an atypically patient party (but not for an atypically impatient
party), this willingness to pay approaches the entirety of his budget as his budget
share—his fraction of the sum of the parties’ budgets—goes to zero. That is, when
most of the funding for his chosen cause is governed impatiently, the payoff that the
patient party attains by acting patiently grows arbitrarily higher than the payoff he
attains by spending as he would under common, less patient discounting.

Finally, §5 illustrates conclusions from the earlier sections with what I believe to
be plausible parameter values, across examples in which the patient funder’s endow-
ment is initially much smaller than, the same size as, and much bigger than the im-
patient funder’s. I focus primarily on the first of these cases. In particular, I consider
the extreme possibility that, when taken to its logical conclusion, the game theory
of the earlier sections recommends that globally impartial patient philanthropists
should, at least under some circumstances, invest their wealth for centuries—until
they have amassed a substantial share of global wealth—before disbursing.

§6 concludes.

2 Benchmark 1: Good provision with a single fun-

der

2.1 Model

Let us begin with a model in which an agent is the sole provider of some good over an
infinite horizon. Consider, for example, the case of a philanthropist providing non-
durable consumption goods for a penniless (but potentially long-lived) individual or
lineage.

Let us denote the size of the agent’s budget at time t = 0 by B. At each
moment t, we will assume that the flow utility u achieved by providing the good is
an isoelastic function, with inverse elasticity of intertemporal substitution η > 0, of
the rate X ≥ 0 at which the agent spends. That is,

u(X(t)) =

{
X(t)1−η−1

1−η , η 6= 1;

ln(X(t)), η = 1.
(1)

The agent faces a constant instantaneous real interest rate r and a constant in-
stantaneous time preference rate δ. The latter might represent pure time preference,
plus the risk of a catastrophe that brings the agent’s utility to zero forever after.
(This could be the rate of “existential catastrophe”, i.e. the risk per unit time that
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the world ends or human civilization collapses. Less dramatically, in the case of a
philanthropist concerned only with a beneficiary individual or lineage, it could repre-
sent this beneficiary’s mortality risk.) There does not appear to be a standard term
for the quantity we are denoting δ, but we will call it the “time preference rate”,
reserving the term “discount rate” for the discounting of marginal spending and the
term “pure time preference rate” for time preference in a risk-free environment. We
need not assume that r or δ is positive.

The agent’s problem is then to choose the schedule of spending rates X(t) that
maximizes

U =

∫ ∞
0

e−δtu(X(t))dt (2)

subject to the constraint ∫ ∞
0

e−rtX(t)dt ≤ B. (3)

Proposition 1. Optimal individual spending schedule
Suppose an agent has isoelastic utility in spending with inverse elasticity of intertem-
poral substitution η > 0, a constant time preference rate δ, and a budget B > 0,
and suppose she can invest her resources at a constant interest rate r. Then, if
δ > r(1− η), the agent uniquely5 maximizes discounted utility by following spending
schedule

X(t) = B
rη − r + δ

η
e
r−δ
η
t. (4)

The payoff to following this spending schedule is

B1−η

1− η

(rη − r + δ

η

)−η
− 1

δ(1− η)
, η 6= 1; (5)

δ ln(Bδ) + r − δ
δ2

, η = 1.

If δ ≤ r(1− η), there is no optimal spending schedule.

Proof. See Appendix B.1.

The above model is motivated in this paper by the scenario in which a philan-
thropist is the sole provider of some good. So far, it is equivalent to an infinite-horizon
consumption-smoothing model under certainty, assuming either (a) no future out-
side income or (b) complete capital markets. (Note that the assumption of complete
capital markets renders this problem the same as the problem one faces with no

5As referenced in §1 (see Fn. 4), I here follow a framework in which continuous time optimization
is defined to be the limit of discrete time optimization as time is discretized across an ever finer
grid. As explained at more length in Appendix A, this framework allows us to characterize the
following spending schedule as the unique optimum, rather than just an optimum unique up to
measure-zero deviations.
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outside income. Given certainty and complete markets, someone with future income
can borrow against her entire income stream, and B can represent current assets
plus the present value of future income.)

In the context of a simple consumption-smoothing model, the optimal spending
rate is highly sensitive to the discount rate. The patient, that is, should spend
slowly. As we can see from (4) at t = 0, it is always optimal to spend at proportional
rate rη−r+δ

η
. In particular, if η = 1, the spending rate should equal δ. For instance,

philanthropists who are funding idiosyncratic projects with no other present or future
funders, who discount future impacts at 0.1% per year, and who are confident that
the world (or their philanthropic projects) will not soon be brought to an end, should
spend only 0.1% of their budgets per year.

In fact, unless
δ > r(1− η), (6)

it is always preferable to delay spending at all times than to begin spending imme-
diately. That is, if (6) does not hold, then given any feasible spending schedule X,
we find that for any s > 0, the feasible spending schedule X̃ defined by

X̃(t) =

{
0, t < s;

ersX(t− s), t ≥ s
(7)

satisfies U(X̃) > U(X). Inequality (6) is thus necessary for an optimal spending
schedule to exist; if it is violated, we face Koopmans’ (1967) “paradox of the indefi-
nitely postponed splurge”. Note that it does so whenever η > 1, r > 0, and δ ≥ 0.
That is, under the standard assumptions that r > 0 and η > 1, an optimal spending
schedule exists even for a fully patient agent.

2.2 The economic importance of time preference

As noted in §1, small donors can currently invest philanthropically-purposed assets
in tax-free funds and disburse them at their own pace, but these funds risk soon
being subjected to a legal disbursement minimum. To begin to shed light on patient
donors’ willingness to pay to avoid this requirement, at least in the single-funder
model of the current section, we will now calculate a patient actor’s willingness to
pay for the right to move from a high disbursement rate to a lower, patient-optimal
disbursement rate.

Similarly, large philanthropists face a choice between holding their capital in a
foundation and holding it privately or in a trust. In the United States, contributions
to foundations are tax-exempt, as are the capital gains their assets earn. Foundations
must disburse at least 5% of their assets per year, however, effectively requiring
them to act impatiently. Trusts are not tax-exempt but are not subject to such a
requirement. The willingness-to-pay calculation below can thus inform large patient
philanthropists about how significant the tax advantage to a foundation must be to
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justify this loss of freedom over the implicit choice of time preference rate (if they
place negligible value on marginal tax contributions).

In §4, we will compare these estimates to the economic importance to patient
actors of patient behavior in the context of strategic interactions with less patient
co-funders.

To begin, let us determine the payoff, for an agent with time preference rate δ, to
spending according to some time preference rate δ̃ 6= δ.

The patient payoff to spending according to δ̃ can be found by substituting δ̃ for
δ in (4) to get the δ̃-optimal spending schedule. Then, substitute this schedule as
X(t) into (2) to get ∫ ∞

0

e−δtu
(
B
rη − r + δ̃

η
e
r−δ̃
η
t
)
dt. (8)

Observe that this will only be defined if

η ≤ 1 or δ̃ < r + δ
η

η − 1
. (9)

If η > 1 and δ̃ is too high, the δ̃-optimal plan may push the spending rate to 0 quickly
enough that, though this produces finite δ̃-discounted disutility, it produces infinite
δ-discounted disutility. Note that δ̃ < r + δ is sufficient to avoid this condition.

Proposition 2. Payoff to spending according a given time preference rate

Suppose the conditions of Proposition 1 are satisfied for an agent. Then given some
δ̃ ≥ δ, if condition (9) is met, the agent’s payoff to following the δ̃-optimal spending
schedule is

Uδ(B, δ̃) =


B1−η(rη−r+δ̃)1−ηηη

(1−η)(δη−(r−δ̃)(1−η)) −
1

δ(1−η) , η 6= 1;

δ ln(Bδ̃)+r−δ̃
δ2

, η = 1.

Proof. Integrate (8) subject to (9).

We can now calculate how much of her budget a patient agent should be willing
to give up to move from the δ̃-optimal to the δ-optimal spending schedule.

Proposition 3. WTP for acting on time preference
Suppose the conditions of Proposition 1 are satisfied for an agent, and consider a
time preference rate δ̃ such that condition (9) is met. Then in order to spend her
resources as would be optimal given δ as opposed to δ̃, she is willing to give up the
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following fraction of her budget:

1− rη − r + δ̃

rη − r + δ

( rη − r + δ

rη − r + δ̃ − (δ̃ − δ)η

) 1
1−η
, η 6= 1;

1− δ̃

δ
e1−

δ̃
δ , η = 1.

Proof. Using the payoff expressions from Proposition 2, set Uδ(B, δ̃) = Uδ((1 −
w)B, δ) and solve for w.

Concretely, suppose r = 5%. Then the value achieved by spending according
to time preference rate δ̃ = 2%, by the lights of time preference rate δ, is equal
to the value achieved by giving up the following budget-fractions but spending the
remaining budget according to time preference rate δ:

WTP given...

η δ = 0.1% δ = 0.5% δ = 8% δ = 40%

0.99 1− 4.0× 10−13 0.84 0.48 0.87

1 1− 1.1× 10−7 0.80 0.47 0.87

1.01 1− 1.8× 10−5 0.77 0.46 0.87

1.25 0.58 0.29 0.36 0.82

2 0.14 0.07 0.21 0.71

0.1% is the time preference rate used by Stern (2006) to represent exogenous risk
of civilizational collapse, and has since become a standard “patient” time preference
rate to use for agents who reject pure time preference. 2% is a common rough
estimate of the time preference rate that most households employ.

As we can see, a patient agent can err substantially by spending as would be
optimal given a more typical time preference rate. That is, implicitly spending
according to discount rate δ = 2% is a mistake she should be willing to give up
a substantial part of her budget to avoid. Furthermore, this willingness to pay is
highly sensitive to the values of η and δ. It is most extreme for low values of η and δ:
in this case it is almost her entire budget. Even when η = 2 and δ = 0.5%, however,
spending as if her time preference rate were 2% is tantamount to a loss of about 7%
of her resources.6

Furthermore, in this context there is a technical symmetry between the case of an
patient funder required to spend patiently and an impatient funder required to spend

6It may be of interest that Mathematica numerically determines the willingness-to-pay expres-
sion of Proposition 3 to be decreasing in η across all admissible parameters, not only those in the
table above. That is, as is perhaps intuitive, the relative benefit to acting on one’s patience appears
to be increasing in one’s elasticity of intertemporal substitution.
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impatiently. As follows relatively directly from the statement of the proposition, as
δ ↓ r(1 − η) or δ ↑ ∞ (holding δ̃ fixed), an agent’s WTP to act on time preference
δ rises to 1, and (given the homotheticity of u) this convergence is independent of
budget size. By contrast, as we will see in §4, the interaction of patient and impatient
funders introduces strong asymmetries, in which small and atypically patient funders
are willing to pay almost everything to act on their true time preferences but small
and atypically impatient funders are not.

3 Interaction between patient and impatient fun-

ders

3.1 Motivation and framework

The model above allows us to determine the optimal spending policy regarding the
provision of a good for which there is only one purchaser. It applies, for instance,
to the schedule on which an individual should allocate her private spending, or on
which a philanthropist only interested in funding an esoteric project should allocate
his spending on that project. When one is a philanthropist providing a public good
to which others also contribute (or would contribute absent one’s own funding),
however, one must consider the ways in which one’s own funding affects the behavior
of the good’s other funders. In particular, when one is a patient philanthropist, one
must remember that investment for future spending can induce less patient funders
to spend more quickly.

As we will see, intertemporal free-riding and crowd-out concerns can motivate
substantially different—and generally even “more patient”—behavior from a patient
philanthropist than is optimal in the single-funder context. In particular, a patient
philanthropist often does best in the presence of impatient funders to invest all his
resources, for some period, and then to spend on an exponential schedule resembling
the single-funder schedule determined above.

Throughout the results below, we will posit a single impatient party I and a single
patient party P , both satisfying the conditions of Proposition 1 (with a common η
and r but individual discount rates and budgets). We will denote party i’s budget at
time t by Bi(t), the total budget by B(t) , BI(t)+BP (t), and i’s budget proportion
by bi(t) , Bi(t)/B(t), for i ∈ {I, P}. Terms without time arguments (Bi, B, bi) will
denote their values at t = 0. Finally, we will denote party i’s time preference rate by
δi, for i ∈ {I, P}. We will assume that the time preference rates satisfy conditions
(6) and (9), with δP as δ and δI as δ̃.7

7If P rejects pure time preference altogether, δI − δP equals the portion of the impatient time
preference rate consisting of pure time preference, as distinct from discounting for e.g. risk of
civilizational collapse.
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We will introduce a more precise framework when necessary, at the beginning of
§3.4. For now, let us omit some technicalities and say only that at every moment t ≥
0, the players observe the spending history {(XI(s), XP (s))}s<t and independently
choose spending rates XI(t) and XP (t) respectively.

Throughout the following sections, it will be helpful to define:

αi ,
rη − r + δi

η
, i = I, P ;

γ ,


(
αP+δI−δP

αI

) 1
1−η
, η 6= 1;

e
δP−δI
δI , η = 1.

αi denotes the optimal spending rate of an agent of type i, as a proportion of his
budget per unit time, when this agent is the only provider of a good. Note that αI ,
αP , and γ are all positive under all admissible parameters, and that γ < 1.

3.2 Benchmark 2: Interaction between warm-glow and al-
truistic funders

Following Andreoni (1990), let us define two forms that a funder’s utility function
might take.

Definition 1. Funder i is altruistic if her utility function is given by

Ui =

∫ ∞
0

e−δitu(XI(t) +XP (t))dt,

where u(·) is an isoelastic function parametrized by η, as before.8

Definition 2. Funder i is warm-glow if her utility function is given by

Ui =

∫ ∞
0

e−δitu(Xi(t))dt,

with Xi(t), rather than XI(t) +XP (t), as the argument of her flow utility function.

That is, the funder is defined to be altruistic if she is concerned with the extent to
which the public good is funded, regardless of who funds it. The funder is defined
to be warm-glow if she is concerned with the extent to which she herself funds the
public good, e.g. because she derives some benefit from being seen as charitable or
because she enjoys the act of giving. As Andreoni (1990) documents, both types of

8If η ≥ 1 and both parties spend 0 at any t, we can without complications define total utility
for both parties to equal −∞, as does Laibson (1994) in a similar context.
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philanthropy (and types along the spectrum that joins these extremes) are widely
observed.

Let us therefore begin by determining optimal altruistic spending behavior by j
in the presence of a warm-glow funder i exhibiting a different rate of time preference.
The game the funders play is simple: at each time s, i chooses the forward-looking
spending schedule Xi(t) (t ≥ s) that maximizes her forward-looking utility. Given
this anticpated schedule of spending by i, j simultaneously chooses the forward-
looking spending schedule Xj(t) (t ≥ s) that maximizes his forward-looking utility.

Proposition 4. Altruistic spending given a warm-glow co-funder
The dynamic public good contribution game described above has a unique equilibrium.
In this equilibrium, if I is warm-glow and P is altruistic, P follows spending schedule

XP (t) =

{
0, t < t∗;(
BIe

(r−αI)t∗ +BP e
rt∗
)
αP e

(r−αP )(t−t∗) −BIαIe
(r−αI)t, t ≥ t∗,

(10)

where

t∗ = max
(

0, ln
( bI
bP

αI − αP
αP

)/
αI

)
. (11)

If P is warm-glow and I is altruistic, I follows spending schedule

XI(t) =

{
BPαP

(
e(αI−αP )t

∗+(r−αI)t − e(r−αP )t
)
, t < t∗;

0 t ≥ t∗,
(12)

where t∗ uniquely satisfies

αI
bP
eαP t

∗ − αP eαI t
∗

= αI − αP (13)

(but has no closed-form solution).

Proof. See Appendix B.2.

Because the preferences of a warm-glow funder are the same as those of a single
funder, the warm-glow spending schedule is always given by Proposition 1.

As we can see, given a warm-glow impatient party, an altruistic patient party does
best to invest all his resources as long as his share of total resources is sufficiently
low: in particular, as long as

bP (t) <
αI − αP
αI

. (14)

The intuition is straightforward. If the impatient party controls a large enough share
of total resources, the impatient-optimal spending rate at which to spend her own
budget may be higher not just than the patient-optimal rate at which to spend her
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budget, but than the patient-optimal rate at which to spend the collective budget.
If so, any spending by the patient party would, on his view, increase the extent to
which they are collectively overspending. He should only begin spending once the
impatient party’s share of the collective budget has shrunk enough that even spending
it impatient-optimally constitutes underspending the collective budget, from the
patient perspective.

Likewise, given a warm-glow patient party, an altruistic impatient party does
best to spend all her resources in finite time, “topping up” P ’s spending only so
long as P underspends the collective budget from an impatient perspective.

Thus, in the context of altruistic spending on public goods, optimal patient and
impatient behavior can differ by even more than they differ in the context of private
spending.

3.3 Benchmark 3: Static interaction among altruistic fun-
ders

If both funders are altruistic, their spending problems take the form of a dynamic
game. There is already a substantial literature on dynamic public goods contri-
bution games, but none of it yet appears to have considered the implications of
differences in time preference. The framework used here is designed to introduce
such differences. In fact it isolates the effects of differences in time preference
by positing that they are the funders’ only preference differences; funders do not
have the opportunity to spend on private goods which only they value, as they are
typically assumed to have. We will therefore hold fixed the size of the budget each
party contributes to the public good.

Before exploring the dynamic game in question, however, let us consider two closely
related static games.

First, let us suppose that each player simultaneously commits at time 0 to a
schedule on which he or she will spend his or her budget over the horizon from t = 0
to ∞. The players here can commit only to absolute spending schedules, not to
history-dependent spending policies.

Proposition 5. Existence and uniqueness of Nash equilibrium in the
simultaneous-move game
Suppose that, at t = 0, each funder i sets the entire spending schedule Xi(t) simul-
taneously. This game has a unique Nash equilibrium, in which

X∗I (t) =

{
(BIαI +BPαP )e(r−αI)t, t < t∗;

0, t ≥ t∗
(15)
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and

X∗P (t) =

0, t < t∗;

BPαP

(
1 + BIαI

BPαP

)αP
αI e(r−αP )t, t ≥ t∗,

(16)

where

t∗ = ln
(

1 +
BIαI
BPαP

)/
αI . (17)

Proof. See Appendix B.3.

This is essentially a special case of the static public good contribution game
analyzed by Bergstrom et al. (1986), but with a continuum of public goods: spending
at each t, for t ∈ [0,∞). As in the analogous Bergstrom et al. case, we here find that
each good is provided by exactly one funder, and a funder always provides a good
when he is also providing a good for which he cares relatively less. That is, since P
cares relatively more than I about spending at t the later t is, there is a threshold
time t∗ such that I is the sole funder before t∗ and P is the sole funder after.

Furthermore, the spending rate is continuous at t∗; limt↑t∗ X
∗
I (t) = X∗P (t∗). If

the spending rate rose discontinuously at t∗, P would do better to reallocate some
spending from t∗ + ε to t∗ − ε for some sufficiently small ε > 0. Likewise, if the
spending rate fell discontinuously, I would do better to reallocate marginal spending
forward.

Next, let us suppose that I is the “Stackelberg leader”. That is, let us suppose
that, at t = 0, I sets a feasible spending schedule XI(t), and P sets a feasible
spending schedule XP (t) in response. As in the simultaneous-move game above,
both spending schedules are here set in their entirety at t = 0; the players cannot
set history-dependent spending policies.

Proposition 6. Existence and uniqueness of subgame-perfect equilibrium
in the Stackelberg game
Suppose that, at t = 0, I sets spending schedule XI(t), and P sets spending schedule
XP (t) in response. This game has a unique9 subgame-perfect equilibrium across the
two periods, which induces spending schedules

X∗I (t) =

{
BI

Z
Z−1 αI e

(r−αI)t, t < t∗;

0, t ≥ t∗
(18)

9Unlike the other results in this paper, this proposition is proven on the assumption that the
parties can directly choose spending schedules defined over the whole real line, rather than one in
which permissible continuous-time spending rates must take the limit of a sequence of discrete-time
spending rates (see Appendix A). The equilibrium is thus found to be unique only up to measure-
zero deviations; spending schedules differing from the below on measure-zero sets of times may also
obtain in equilibrium.
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and

X∗P (t) =

{
0, t < t∗;

BP Z
αP
αI αP e

(r−αP )t, t ≥ t∗
(19)

respectively, where
t∗ = ln(Z)/αI (20)

and

Z , 1 +
BIαI
BPαP

γ. (21)

Proof. See Appendix B.4.

Since γ < 1, the regime-switching time t∗ occurs earlier in the Stackelberg case
than in the case where the funders set their spending plans simultaneously. Further-
more, recall that in the simultaneous-move case, spending is continuous at t∗. Here,
the spending rate falls discontinuously at t∗, as I allocates budget BI over a shorter
time interval and P stretches BP over an infinite horizon beginning earlier.

3.4 Dynamic interaction among altruistic funders

We will now explore the funders’ interaction in a dynamic setting. To formalize
this game, we will use a simplification of the framework of Stinchcombe (2013),
summarized in Appendix A.1–A.3. For expository purposes, we will here summarize
the notation.

We will define a complete (spending) history as an assignment of a spending rate
Xi,t to each player i for each t ≥ 0. It will be denoted by

X , {(XI,t, XP,t)}∞t=0. (22)

An “open partial history” truncated just before some t will be denoted X|t. In a
slight abuse of notation, we will denote total spending at t by Xt.

A feasible history X is one whose spending schedules are integrable and feasible
for each player: that is, one in which∫ ∞

0

e−rtXi,tdt ≤ Bi (23)

for each i.
We will denote the set of decision nodes by D. Note that this is precisely the set

of open partial feasible histories: D , {X|t} : X is feasible, t ≥ 0.
A strategy σi for player i is a function from nodes to spending rates, i.e. σi :

D→ R≥0. Player i’s strategy set will be denoted Σi, strategy profiles will be denoted
σ , (σI , σP ), and the set of strategy profiles will be denoted Σ , ΣI × ΣP .
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We will denote i’s budget at time t given feasible history X—i.e. at node X|t—by
Bi(X|t). Likewise, the total budget will be denoted B(X|t) and budget proportions
bi(X|t).

We will denote by χ(σ) the history induced by strategy profile σ.10 Given X|t ∈ D,
if the players subsequently adopt strategy profile σ, we will denote the resulting
history by χ(X|t, σ).

A strategy profile σ∗ is a subgame-perfect equilibrium11 if, for all X|t ∈ D,∫ ∞
t

e−δisu(χ(σ∗)s)ds ≥
∫ ∞
t

e−δisu(χ(X|t, (σi, σ
∗
j ))s)ds ∀σi ∈ Σi (24)

for both players i (where j denotes the other player).

Definition 3. A defection profile of the dynamic game above is a strategy profile
σD in which

BI(X|t) > 0 ⇐⇒ σ∗P (X|t) = 0 ∀X|t ∈ D. (25)

In other words, a defection profile σD is one which maintains a history χ(σD) in
which the patient party does not fund the public good until the impatient party has
disbursed all her resources—i.e. until

t∗ , min({t : BI(χ(σ∗)|t) = 0}). (26)

As we will now see, the game has infinitely many subgame-perfect equilibria, but
exactly one “defection equilibrium”. That is, one subgame-perfect equilibrium is a
defection profile.

Theorem 1. Existence, uniqueness, and Stackelberg-equivalence of de-
fection equilibrium
The dynamic game above exhibits a unique defection equilibrium σD. The defection
equilibrium induces spending rates Xi,t(σ

D) = X∗i (t) for each i, where the X∗i (t) are
defined as in Proposition 6.

Proof. See Appendix B.5.

Note that the defection equilibrium is Markov perfect, taking (BI , BP ) as the
state variable.

Let us call
XD
t , χ(σD)I,t + χ(σD)P,t (27)

10The result that that a strategy profile induces a determinate history, in continuous time, requires
the more precise framework; see Appendix A.3.

11Roughly; see Appendix A for a discussion of infinitesimal deviations.
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the “defection schedule”. Like the Stackelberg schedule, it follows an impatient-
optimal spending schedule for t ∈ [0, t∗) and a patient-optimal spending schedule
for t ∈ [t∗,∞). Because it is equal to the Stackelberg schedule, we know that I
strictly prefers it to the Nash schedule, which is also feasible for I in the Stackelberg
setting. By analogous reasoning it is strictly dispreferred to the Nash schedule by P ,
who would prefer to slow I’s spending with a later, rather than an earlier, regime-
switching time t∗.

In effect, it appears that in a public good contribution game between funders
whose preference-differences consist of differences in time preference, the impatient
funder has a first-mover advantage, allowing her to do better than her counterpart in
a static public good contribution game between funders with preference-differences
over a continuum of single-period goods.

Except in the trivial cases where bI = 1 or 0 (so that t∗ = 0 or∞, respectively), XD

is inefficient. The impatient party is indifferent regarding marginal reallocations of
resources from t1 < t∗ to t2 ∈ (t1, t

∗], whereas the patient party strictly prefers them.
Likewise the patient party is indifferent regarding marginal reallocations of resources
from s2 > t∗ to s1 ∈ (t∗, s2), whereas the impatient party strictly prefers them. If
the parties could contract, therefore, they could achieve a Pareto improvement by
shifting spending toward t∗ from both sides.

However, an enforceable contract is not necessary to achieve efficiency.

Proposition 7. Efficient equilibria
A spending schedule is efficient iff it maximizes discounted utility using declining
time preference rate

δ(t) =
aδIe

−δI t + (1− a)δP e
−δP t

ae−δI t + (1− a)e−δP t

for some a ∈ [0, 1]. Furthermore, every efficient Pareto improvment to the defection
schedule can be obtained in a subgame perfect equilibrium.

Proof. See Appendix B.6.

Thus, the common result that continuous-time public good contribution games
with perfect monitoring admit efficient subgame-perfect equilibria also applies to the
current case, in which preference differences consist of time preference differences.

Finally, as we can see, an efficient spending schedule uses a time preference rate
that declines from aδI + (1 − a)δP at t = 0 to δP as t → ∞, as long as a < 1.
In doing so, it follows the same path as the declining discount rate that is optimal
under discount rate uncertainty, for an agent placing probability a on the validity
of discount rate δI and probability 1 − a on that of δP . It is also optimal from the
perspective of a “weighted utilitarian” social planner intending to place weight a on
I’s preferences and 1− a on P ’s, at time 0.
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As noted in §1, Jackson and Yariv (2015) and Millner and Heal (2018) find
that such a planner—or analogously, a committee of planners fraction a of whom
are of the impatient type, who wish to aggregate their preferences over spending
schedules according to the utilitarian social welfare function—will be unable, without
commitment, to implement this optimal spending schedule. Proposition 7 tells us
that, by devolving public good provision to private parties, such a spending schedule
is implementable, as long as the allocation of the initial budget to each party is within
the range such that the desired efficient schedule is a Pareto improvement on the
defection schedule. (This may require an “over-endowment” of the patient party,
due to the “first-mover advantage” the impatient party enjoys under defection.)
These devolved budgets must be earmarked for public good provision, but free from
requirements on the disbursement schedule, as private trusts typically are in both
respects.

4 Costs of common discounting

4.1 Payoffs without common discounting

Spending the collective budget according to a fixed rate of time preference δ ∈ (δP , δI)
is not Pareto-efficient. Proposition 7 thus establishes that there are equilibria of the
dynamic public good provision game which are preferred by both parties to spending
collectively under a constant time preference rate. As in §2.2, let us now explore the
economic importance of this preference by determining “how much” a patient or
impatient altruist errs by agreeing to spend the collective budget according to an
intermediate time preference rate. As we will see, unlike in §2.2, this error can be
arbitrarily large, even for an arbitrarily small discount rate divergence.

To begin, from Proposition 2 at δ = δi, alternative rate δ̃, and B = BI +BP (still
denoted B), we have i’s payoff (if altruistic) in the event that the collective budget
is spent δ̃-optimally. As in that context, let us denote this payoff Uδi(B, δ̃). We will
now compute i’s payoff in equilibrium in the presence of warm-glow and altruistic
impatient co-funders respectively, assuming that the co-funder does not share i’s rate
of time preference.

Proposition 8. Altruistic payoff given a warm-glow co-funder
If I is warm-glow and P is altruistic, P attains payoff

B1−η

1− η
α−ηP −

1

δP (1− η)
, η 6= 1;

ln(BδP )− 1

δP
+

r

δ2P
, η = 1
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if bP ≥ (αI − αP )/αI , and

B1−η
I

1−η α
1−η
I

[(
1

δI−δP−αI
+ 1

αP

)(
BI
BP

αI−αP
αP

) δI−δP−αI
αI − 1

δI−δP−αI

]
− 1

δP (1−η)
, η 6= 1; (28)

1
δP

[
ln(BIδI) + r−δI

δP
+
(
BI
BP

)− δP
δI

(
δI−δP
δP

) δI−δP
δI

]
, η = 1

if bP < (αI − αP )/αI .
If P is warm-glow and I is altruistic, I’s payoff is bounded above by

UδI (BP , δP ) +BI(BPαP )−η, (29)

which it approaches as bI → 0.

Proof. See Appendix B.7.

In the presence of an altruistic impatient funder, we have seen that there are
multiple equilibria, offering the parties different payoffs. Without an equilibrium
selection argument, therefore, the payoff to each party is indeterminate. Because
of the defection equilibrium’s simplicity and Markov perfection, however, we may
loosely take the defection payoffs to be natural lower bounds on the payoffs to expect
to accrue each party.

Proposition 9. Defection payoff given an altruistic co-funder
In the presence of an altruistic impatient funder, if the funders engage in the defection
equilibrum or a Pareto-superior equilibrium, a patient funder attains a payoff of at
least

B1−η
P

1− η
α−ηP

αIαPηZ
1−η + (δI − δP )2(1− η)Z

−αP
αI

η

αIαPη + (δI − δP )2(1− η)
− 1

δP (1− η)
, η 6= 1; (30)

1

δP

[(δI − δP )2

δIδP
Z
− δP
δI + ln(BP δPZ) +

δI − δP
δI

+
r − δI
δP

]
, η = 1,

and an impatient funder a payoff of at least

B1−η
P

1− η
α−ηP Z−η

(BI

BP

γη +
αP

αP + δI − δP

)
− 1

δI(1− η)
, η 6= 1; (31)

1

δI

[
ln
(
BP δPZ

)
+
r − δP
δI

]
, η = 1,

where Z is defined as in Proposition 6.

Proof. Integrate δi-discounted utility given the spending rates from Theorem 1. That
is, calculate∫ t∗

0
e−δitu

(
BI

Z
Z−1αIe

(r−αI)t
)
dt+

∫∞
t∗
e−δitu

(
BP Z

αP
αI αP e

(r−αP )t
)
dt,

for i = I, P , where t∗ is defined as in Proposition 6.
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4.2 Defining a compromise rate

In §4.3, we will compare the extent to which P values the right to spend patiently
in a decentralized equilibrium, rather than join I in collective spending under time
preference rate δ ∈ (δP , δI ], with the extent to which I correspondingly values the
right to spend impatiently. Though the central implication of the results will not
depend on the details of the chosen collective spending rate, it may be instructive to
compare the parties’ payoffs under a decentralized equilibrium to those that obtain
under a particular “compromise rate”, motivated as follows.

When a public policy offers intertemporal costs and benefits, its welfare analysis
requires a method of comparing the value of costs and benefits at different times. A
standard procedure is to discount future flow utility using a constant time preference
rate δ inferred from observed interest rates, growth rates, and inverse elasticities of
intertemporal substitution using the Ramsey Formula:

r = δ + ηg =⇒ δ = r − ηg (32)

(see e.g. Freeman et al., 2018).
In a world without risk, in which r is exogenous and constant,12 and in which

agents exhibit a common isoelastic flow utility function parametrized by η and a
common time preference rate δ, the economic growth rate g is determined by in-
dividuals’ investment decisions to equal (r − δ)/η. (This follows immediately from
Proposition 1.) The common time preference rate then does indeed equal r − ηg.

In this world, private parties will disburse philanthropic funds at the δ-optimal
rate of (rη − r + δ)/η, as we have seen. Thus, no policy imposing philanthropic
disbursement requirements can improve on the privately chosen disbursement rate,
from the perspective of a policymaker engaging in the welfare analysis above.

Suppose however that some households exhibit time preference rate δP and some
exhibit δI > δP , and that these households begin at t = 0 with assets collectively
totaling BH

P and BH
I respectively. Because output at t equals rBt, the observed

instantaneous GDP growth rate will equal the growth rate of collective wealth. This
will in turn equal the interest rate minus the proportional collective spending rate:

g = r − BH
P αP +BH

I αI
BH
P +BH

I

=
BH
P
r−δP
η

+BH
I
r−δI
η

BH
P +BH

I

(33)

(ignoring the spending behavior of philanthropic funders, due to their relatively small
size). The Ramsey-calibrated aggregate time preference rate is then

δC , r − ηg =
BH
P δP +BH

I δI
BH
P +BH

I

= bHP δP + bHI δI . (34)

12Note that, by assuming that r is exogenous and by positing capital as the only factor of
production, we are implicitly assuming an AK economy. The above relationship between δ and
observed variables, however, holds under much more general conditions.
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More generally, then, we may define bP δP + bIδI to be a natural “compromise” time
preference rate among agents P and I with budget shares bP and bI . It is the rate
we may expect to govern Ramsey-calibrated public policy, if the budget-weighted
distribution of time preference rates among these agents does not differ from that
among the population at large.

Under time preference rate δC , the optimal proportional spending rate—or in a
philanthropic context, the optimal disbursement rate—equals the constant

αC ,
rη − r + δC

η
, (35)

by Proposition 1. Under time preference heterogeneity, however, private parties I
and P will not indefinitely disburse philanthropic funds at rate αC , regardless of
whether they are both warm-glow, one is warm-glow and one is altruistic, or both
are altruistic and they engage in the defection equilibrium or an efficient equilib-
rium. In particular, in all cases, their collective disbursement rate will ultimately
fall exactly or asymptotically to αP < αC . For a policymaker, therefore, taking the
incorrect assumption of time preference homogeneity seriously—or taking the time
preference rate implied by the market interest rate as a quasi-democratic aggregate
of citizens’ time preference rates, and seeking to set optimal policy on the basis of
this aggregate rate—might motivate imposing a binding, long-term philanthropic
disbursement requirement of rate αC .

In fact, this is roughly what is done. Foundations in the United States are
required to disburse their funds at a rate of at least 5% per year: the optimal dis-
bursement rate given a time preference rate of 2% (as is commonly calibrated to the
population at large), an interest rate of 7%, and an observed economic growth rate
of approximately 2%. No disbursement maximum is imposed, presumably in part
because it is not needed: in the unregulated environment, aggregate proportional
disbursement falls toward the patient-optimal rate.

This evaluative framework also shapes the policy discussion around donor-advised
funds (DAFs). DAFs are investment vehicles for small donors which are currently
both tax-exempt and (at the individual level) exempt from disbursement require-
ments. As noted in §1, however, proposals to eliminate these tax exemptions or
impose disbursement requirements have recently become politically popular in the
United States. Andreoni (2018) uses the reasoning outlined above to find that DAFs
spend “too slowly”, and thus recommends eliminating their tax exemption. Again,
this recommendation implicitly relies on the questionable practice of normatively
evaluating the social benefits of every donor’s spending schedule according to the
pooled discount rate implied by the prevailing interest rate.

The economic significance of the implications of disbursement requirements will
be discussed further in §5. Here, we will simply note a stark asymmetry between the
costs of enforced “compromise”—or, in some sense, of an imposed time preference



PUBLIC GOODS UNDER TIME PREFERENCE HETEROGENEITY 23

homogeneity assumption—to patient and impatient public good providers respec-
tively.

4.3 Asymmetric WTP to avoid common discounting

Define “patient behavior” to mean altruistic patient-optimal private spending in the
face of a warm-glow impatient funder, or engagement in the defection equilibrium
or a Pareto-superior equilibrium in the face of an altruistic impatient funder. Define
“impatient behavior” likewise.

Theorem 2. Unbounded WTP for patient behavior
Given an impatient funder of either type, an altruistic patient funder’s willingness
to pay to engage in patient behavior rather than collective disbursement at rate αC,
as a proportion of his budget, approaches 1 as bP → 0.

Proof. See Appendix B.8.

Corollary 2.1. Given an impatient funder of either type, an altruistic patient fun-
der’s willingness to pay to engage in patient behavior rather than collective disburse-
ment at rate αI , as a proportion of his budget, approaches 1 as bP → 0.

Corollary 2.2. Given an impatient funder of either type, an altruistic patient fun-
der’s willingness to pay to engage in patient behavior rather than face a disbursement
minimum of αC approaches 1 as bP → 0.

These corollaries follow from the observations that P strictly prefers collective
disbursement at rate αC both to collective disbursement at rate αI and to a one-
sided disbursement requirement of αC , which would raise his own disbursement rate
without binding on I.

We saw in §3.2–3.4 that the presence of an impatient co-funder, warm-glow or
altruistic, should often motivate a patient philanthropist to spend even more slowly
than he would if he were the only funder of a given public good. Here we see that
if the patient philanthropist spends at a less patient rate, his “loss” (in willingness-
to-pay terms) can be much larger with the presence of an impatient co-funder than
without—even when spending at the less patient rate comes with the benefit of
inducing a much larger impatient co-funder to spend at a more patient “compromise
rate”. Finally, we see that as the size of the impatient budget increases relative to his
own, his loss from spending impatiently grows arbitrarily large. That is, regardless
of the other parameters, for sufficiently small bP he is willing to lose approximately
his entire budget, and all influence over the spending rate of the impatient budget,
in exchange for the right to spend his remaining pittence patiently.

This finding underscores the potentially extreme undesirability of disbursement
requirements from a patient perspective, first discussed in §2.2. It also highlights the
value that relatively small patient donors may find in recognizing the implications of
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their patience for their optimal giving schedules. Small patient donors who hope to
contribute to the funding of public goods primarily funded by larger and less patient
actors have the most to gain—indeed, in proportional terms, have arbitrarily much
to gain—by putting their patience into practice.

By contrast:

Theorem 3. Bounded WTP for impatient behavior
Given a warm-glow patient funder, an altruistic impatient funder’s willingness to pay
to engage in impatient private spending rather than collective spending at rate αP ,
as a proportion of her budget, is uniformly bounded below 1 across bI ∈ (0, 1).

Given an altruistic patient funder, an altruistic impatient funder’s willingness to
pay to engage in the defection equilibrum rather than collective spending at rate αP ,
as a proportion of her budget, equals

1− αP
αIγ

, (36)

independent of bI . Her proportional willingness to pay to engage in the defection
equilibrium or a Pareto-superior equilibrium is thus bounded below 1 across bI ∈
(0, 1).

Proof. See Appendix B.9.

Corollary 3.1. Given a patient funder of either type, an altruistic impatient funder’s
willingness to pay to engage in impatient behavior rather than collective disbursement
at rate αC, as a proportion of her budget, is bounded below 1 across bI ∈ (0, 1).

Note that Corollary 2.1 and Theorem 3 demonstrate an important asymmetry
that does not depend on the definition of a compromise rate: I’s willingness to pay to
avoid δP -optimal disbursement is bounded, whereas P ’s willingness to pay to avoid
δI-optimal disbursement is not. Note also that these results obtain despite the fact
that the payoff bounds to each party, in the case that both are altruistic, are given by
the defection equilibrium, whose spending schedule is “biased in I’s favor” relative
to the funding allocation that would obtain in equilibrium among these funders in
the analogous static public good contribution game.

5 Applications

As shown by Corollary 2.1, patient parties’ gain to spending “strategically”, relative
to their payoff from spending impatient-optimally, is greatest when the public good
under consideration is provided primarily by the impatient parties. In the examples
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below, instead of using WTPs explicitly (for which we do not in general have closed-
form representations), we will characterize lower bounds on the economic importance
of strategic patient behavior, for P , by the payoff ratios

UD
P − U0

P

U I
P − U0

P

and
UWG
P − U0

P

U I
P − U0

P

, (37)

where U0
P denotes P ’s payoff if he spends nothing, leaving I alone to fund the public

good; U I
P denotes P ’s payoff if he spends δI-optimally alongside I; UD

P denotes P ’s
payoff from engaging in the defection equilibrium; and UWG

P denotes P ’s payoff from
best-responding a warm-glow I. The payoff ratios thus represent “how many times
more good P does”, by his lights, by best-responding to an altruistic impatient party
playing the defection strategy, or respectively a warm-glow impatient party, than by
spending impatiently.

To quantify the most extreme possible implications of Corollary 2.1 in practice,
let us begin by considering the (very broad) public good with the largest quantity of
impatient funding allocated to its provision: global human consumption as a whole.

Note that individual consumption is a public good in a philanthropic setting be-
cause it nonexcludably and nonrivalrously satisfies the preferences of two parties: the
consumers and the philanthropists who care about them. Given impartial philan-
thropists who do not restrict their concerns to particular consumption classes (such
as medicine or the arts) or to people of a single region, all consumption is a public
good.

Note also that there is extensive evidence that people tend to employ lower time
preference rates when making intertemporal consumption decisions for others than
for themselves; see Frietas-Groff (2020) for a recent experimental approach and
review of the literature. It is thus reasonable to suppose that philanthropic spending
on others’ consumption is—and, as patient philanthropists are informed of relevant
economic logic, will increasingly be—governed by game-theoretic considerations
along the lines presented here.

To set bP as low as possible, we will assume that the entirety of global wealth is
currently purposed to funding human consumption, with everyone exhibiting time
preference rate δI = 2%, except for a small community of patient philanthropists with
unusual moral commitments to the welfare of future generations, who exhibit time
preference rate δP = 0.5%.13 We will assume an interest rate of r = 5%. We may thus

13This rate is chosen to roughly equal the of annual probability of an expropriation or civilizational
collapse that renders philanthropic accumulation worthless, on the basis of estimates by Arbesman
(2011) and Sandberg (2019) on the historical longevities of political institutions, and unpublished
data compiled by Max Negele on the historical longevities of European universities and Catholic
religious institutes. Note that this rate is substantially higher than Stern’s (2006) oft-used 0.1%
exogenous global hazard rate, and that using the lower rate of 0.1% would increase the calculated
payoff gain to patient strategic behavior.
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very roughly estimate global wealth, in the relevant sense, to be twenty times gross
world product, or $1.8Q.14 Patient philanthropists’ budgets probably cannot total
less than $25B, as this is roughly the net present value of the philanthropic budgets
of the current Effective Altruism community, a community of philanthropists with
explicit commitments to impartiality, including temporal impartiality.15 So, again
for purposes of exploring the most extreme end of the range of possible implications,
let BI = $(1.8Q – 25B) and BP = $25B. Finally, let us assume that η = 1.25, to cor-
respond roughly to (low) estimates of individuals’ inverse elasticies of intertemporal
substitution with respect to their own consumption.

Under these parameters, if the parties engage in the defection equilibrium, the
patient invest exclusively for 437 years—at which point the impatient have dis-
bursed their entire budgets—and subsequently implement the patient-optimal spend-
ing schedule. The patient payoff ratio is 291.

In practice, however, for numerous reasons, we may consider it unrealistic to
suppose that an impatient world will fully respond to patient philanthropists’ long-
term investment strategy by making plans to spend all their (and their heirs’) wealth
within the next few centuries, leaving the subsequent future entirely in the hands of
the heirs of the patient philanthropists. At the other end of this spectrum, therefore,
let us suppose that the impatient parties do not respond to investment by patient
parties with any spending increases at all, and instead simply spend according to
the impatient “warm-glow” schedule. In this case the patient do best to invest for
424 years—at which point they hold 46% of global wealth—and subsequently to
implement the patient-optimal spending schedule. The patient payoff ratio is then
580.

In short, it appears, at least on this highly stylized analysis, that while the world
remains predominantly comparatively impatient, patient philanthropists hoping to
do good by increasing people’s consumption might do up to several hundred times
“more good” by investing the entirety of their resources on the current margin than
by spending their resources on an impatient schedule.

Comparing the defection and warm-glow payoffs to the payoffs under common
spending at the compromise rate αC yields similarly large payoff ratios of 179 and

14Gross world product was estimated to be $88T in 2019 by World Bank (2021a). Note that
estimating global wealth in this way yields a substantially higher figure than a direct estimate of
wealth holdings, e.g. that of Credit Suisse Research Institute (2021). This is primarily because the
latter incorporates only explicit asset holdings, whereas the former also implicitly incorporates all
human capital and untitled environmental resources.

15A thorough accounting of patient philanthropic assets would be beyond the scope of this paper,
but there are at least two multibillionaires with close ties to the EA community who plan to give
away the substantial majority of their wealth: Dustin Moskovitz and Sam Bankman-Fried, with es-
timated net worths of $17.8B and $8.7B respectively (Dolan et al., 2021). Even if they do not spend
all their wealth philanthropically, or explicitly wish to allocate some of their philanthropic spending
impatiently, the presence of many smaller EA philanthropists and donors renders it unlikely that
the “patient philanthropic budget” is less than $25B.
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356 respectively. Thus, by the reasoning of Corollary 2.2, a disbursement minimum
of αC reduces patient parties’ payoffs to engaging in philanthropy here by more
than two orders of magnitude.

In practice, philanthropists seeking to maximize global welfare do not face a choice
between giving to a “representative agent” now or investing to do so in the future,
but a choice between giving to the world’s poorest today and investing to give in
the future. That is, by taking BI to be global wealth, rather than the wealth of
the world’s poorest, we are implicitly comparing a scenario in which the patient
invest to fund consumption for everyone in the future to one in which they spread
their wealth across the world today; but, whereas long-term investment at this scale
can only rationally end in global and “untargeted” expenditures, by spending more
quickly a philanthropist can target the world’s poorest today. To roughly evaluate
the magnitude of this consideration, however, observe that( 365

9000

)−1.25
≈ 55� 291 : (38)

given η = 1.25, the marginal utility in consumption of an individual consuming $1 per
day is (“only”) about 55 times greater than to that of an individual consuming the
current average global consumption level of approximately $9,000 per year (World
Bank, 2021b). For a patient and impartial philanthropist, therefore, investing for
the future appears to be worthwhile even when it comes at the cost of foregoing all
targeting. The extent to which the world today neglects its poor is outweighed, not
dramatically but substantially, by the extent to which it neglects its future.

An obstacle to taking disbursement plans on this scale literally is of course that,
as the saving rate rises to r − αP and absolute collective budget B rises to infinity,
macroeconomic parameters here taken as exogenous should be expected to change.
For instance, by assuming constant r, we implicitly assume an AK economy; in
reality, given a multi-factor production function with diminishing returns to each
factor, accelerated capital accumulation should lower interest rates (but offer the
positive externality of raising other factor rents, such as wages). In this and other
ways, further work would be necessary to embed the public good provision model
developed here in a more realistic economic environment. Nevertheless, the exercise
of this section demonstrates that patient philanthropic actors in an impatient world
can indeed do well to invest most or all their funds for the relatively long run, and
that spending impatiently—whether because they are legally required to or because
they behaviorally set their disbursement rates to match those of their fellows—can
constitute a highly significant error. If the details of the calibration as presented
here fail, that is because the qualitative argument is a victim of its own success,
recommending investment beyond the scale that a standard public good provision
model is equipped to consider.
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By contrast, let us now briefly consider a public good for which the patient and
impatient budgets are initially equal. We will not alter the other parameters.

In this case, if the parties engage in the defection equilibrium, the patient invest
for 30 years and subsequently implement the patient-optimal spending schedule, and
the patient payoff ratio is a comparatively modest 1.36. If the impatient follow
the warm-glow schedule, the patient can implement the patient-optimal spending
schedule immediately, earning payoff ratio 1.44.

Note that these values depend only on the budget ratio and so are independent
of the absolute budget sizes.

Lastly, of course, as bP → 1, the patient will begin spending immediately or almost
immediately; the payoff ratios approach 1; and the spending schedule approaches
that of §2.

6 Conclusion

The economic implications of time preference heterogeneity have been extensively
explored in a variety of domains, including social discounting, optimal taxation,
and dynamic bargaining. They have to date, however, largely been overlooked
in literature on the private provision of public goods. The results presented here
begin to fill this gap, and illustrate the importance of building time preference
heterogeneity into models of dynamic public good provision going forward.

I have argued that in dynamic public good provision contexts, time preference het-
erogeneity is both even more widespread and even more important than in other
contexts. Analyses of dynamic public good provision under common discounting
assumptions therefore often risk being highly misleading.

For the most important dynamic public good provision games in practice, there
is unusually clear empirical and theoretical evidence that their players do not employ
common discounting. Models of dynamic public good provision are especially rele-
vant in the context of international contributions to global public goods, because,
in the absence of strong international governance, nations must effectively engage in
public good provision games. While governments’ time preference rates are typically
chosen on the basis of domestic interest rate data, so as to match the time prefer-
ences of their own populations—eliminating time preference heterogeneity in games
between governments and their constituents, at least if the constituents are them-
selves homogeneous—nations’ time preferences often differ substantially from one
another, as can be verified immediately from their respective published guidelines
on discounting for public policy.

We should likewise expect time preference heterogeneity to be a pervasive fea-
ture of private philanthropy. Given the differing patience exhibited in households’
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intertemporal consumption decisions, there is no reason to suppose that these differ-
ences would be absent among private parties seeking to fund a good that happens
to be nonexcludable and nonrivalrous. Furthermore, philanthropy prototypically in-
volves providing consumption goods to others who also to some extent provide for
themselves, and as noted briefly in §5, time preference heterogeneity is almost in-
trinsic to the interaction between these two providers. This is because beneficiaries
typically face mortality risks, and temptations to impatience, that we should not
generally expect to appear (and which, at least to some extent, empirically do not
appear) in the utility function of a third-party provider.

Again, moreover, time preference heterogeneity is not just a particularly
widespread phenomenon in dynamic public good provision settings but also a par-
ticularly important one. As a comparison between the §2 and §3 models illustrates,
equilibrium behavior in dynamic public good games with versus without time prefer-
ence heterogeneity can differ dramatically: a player might spend at a strictly positive
rate at time zero under homogeneity but, given a time preference rate only slightly
below that of his co-funder, follow some period of spending nothing whatsoever. Be-
havior in equilibrium can then resemble behavior in a static game, at least under
one particularly simple equilibrium—in which the parties’ funding does not overlap
across periods, so that each party only funds the goods with which he or she is
relatively more concerned—but with a “bias” equivalent to giving impatient parties
a first-mover advantage in the static setting. Nevertheless, even under arbitrarily
small time preference differences, understanding and correctly implementing strate-
gic behavior can in theory have arbitrarily large proportional welfare implications for
small patient actors in a large impatient world, in the sense explored in §4 (though,
interestingly, not the reverse). These implications may be large in practice as well,
as computed roughly in §5.

These implications are more economically significant than the (still non-trivial)
sensitivity of payoffs to spending rate choices when there is a single funder (as in
the context of private goods), as can be seen by comparing the results of §2.2 and
§4.3. Furthermore, from the perspective of a patient party, these implications do
not rely on strong assumptions that the corresponding impatient party is perfectly
rational and perfectly informed of the patient party’s strategy. Indeed, they obtain
even (and especially) if the impatient funder does not respond to his strategy at all,
but simply spends as if she were the only funder, as found in §3.2 and §4.

The pervasiveness and importance of time preference heterogeneity in public good
provision contexts has, in turn, at least two broad classes of policy implications.

First, it affects the structure of self-enforcing agreements for the provision of
public goods among multiple parties who cannot contract, such as national govern-
ments. Such agreements can be efficient, as shown in §3.3, at least in continuous
time and with perfect monitoring. If agreements are designed without accounting
for the parties’ different discount rates, however, they will generally not be efficient,



PUBLIC GOODS UNDER TIME PREFERENCE HETEROGENEITY 30

and may fail to be self-enforcing as intended. The United States’s 2017 withdrawal
from the Paris Agreement on climate change, for instance, coincided with an explicit
impatient shift in Office of Management and Budget policies on social discounting, as
requested by the newly elected president. If Americans are simply less patient than
their international counterparts, this will in the long run affect democratically-set
discounting policy, and punishments (here taking the form of increases in collective
emissions) sufficient to deter defections by many countries may be insufficient to
deter defections by Americans.

An understanding of the importance of time preference heterogeneity for public
good provision might also affect the policy conversation around disbursement
requirements for philanthropic foundations, trusts, and DAFs. Voters and policy-
makers might look more charitably on slow- or non-disbursing charitable investment
vehicles once a lack of disbursement is understood not as proof of a nefarious tax-
avoidance scheme but as a natural consequence of patient philanthropic planning.
Estimates of a patient philanthropist’s willingness to pay to avoid disbursement
requirements in principle—which, as shown in §4.3, can be arbitrarily higher in a
multi-funder context under time preference heterogeneity than in the single-funder
context (§2.2)—may also motivate patient philanthropists themselves to fight
disbursement requirements more vigorously.

Of course, the results and discussions here only begin to cover the space of possible
implications of time preference heterogeneity for public good provision.

The simple setting I have explored here focuses on the implications of time pref-
erence heterogeneity per se by featuring only two players and a single public good;
perfect monitoring; no option of outside spending on private goods; a shock-free AK
economy; and no way for spending to “do good” except through immediate “con-
sumption”. Even in this highly restricted setting, the analysis is incomplete without
further work on equilibrium characterization and selection. To make precise pre-
dictions of what equilibrium will obtain in the absence of coordination, it would be
necessary to determine whether the Defection Equilibrium or another SPE satisfies
a natural equilibrium refinement. Likewise, to set a true lower bound on the payoffs
that could accrue in equilibrium to each party, the equilibrium payoff set would have
to be characterized more carefully. Finally, to quantify the benefits of coordination,
it could be valuable to explore equilibrium selection among efficient SPEs, perhaps
using tools from the considerable existing literature on dynamic bargaining under
time preference heterogeneity.

Much more work, both theoretical and applied, is necessary to explore the im-
plications of time preference heterogeneity in real-world public good provision prob-
lems which do not conform to the list of restrictions above. For instance, in reality,
governments and philanthropists generally have more options than to fund present
consumption goods and to invest for the funding of future consumption goods. They
can also, say, fund present projects with high expected future payoffs, such as the
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development of green technologies. Indeed, funders expressing patience often judge
it worthwhile to fund such projects. Answering to what extent they should fund such
projects immediately and to what extent they should invest for future funding—in
light of other potential technology funders with different rates of time preference—
would be a valuable application for future research.

Even the very simple model explored here confronts a host of complexities, in
part because many useful results from the literature on repeated games (like algo-
rithms to characterize the set of equilibrium payoffs) cannot be used here. Extensions
along the lines above would doubtless face even more difficulties. Given the perva-
sive importance of time preference heterogeneity to dynamic public good provision,
however, such efforts appear to be worthwhile.
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A Framework for games in continuous time

A.1 Preliminaries

Throughout this paper we consider dynamic games and optimization problems con-
tinuous time. We roughly follow the framework introduced by Simon and Stinch-
combe (1989), as also exposited by Stinchcombe (2013) and as summarized here.

Note that Simon and Stinchcombe (1989) simplify their (otherwise much more
general) analysis by permitting players only finitely many changes in the actions
they play, and Stinchcombe (2013) simplifies his exposition of the relevant material
by restricting the time horizon to [0, 1) (without explicitly noting, as Simon and
Stinchcombe (1989) do, that an analogous framework can also be used over an
infinite horizon). The relevant results, however, also apply in our case when players
are permitted countably many action changes and face an infinite horizon. Later
work relaxes both these restrictions, but only within the context of repeated games.

Partition the nonnegative half of the real line by a sequence of grids, indexed by n,
such that grid n+1 is a strict refinement of grid n. The elements of grid n are of equal
length, and this length converges uniformly to zero as n increases. For our purposes,
the choice of grid sequence will not be significant, within the caveats noted below.
But where not otherwise specified, we will use the grid sequence G characterized by

Gn ,
{[
kgn, (k + 1)gn

)}∞
k=0

, where gn = 10−n. (39)

The kth element of Gn will be denoted Gn,k. The set {kgn}∞k=0 will be denoted Gn,
likewise indexed by k. As we can see, the length of G’s elements at n takes a value,
denoted gn (here equaling 10−n), which tends to zero as n increases. The index of
the element of Gn containing time t will be denoted kn(t). We will denote the set
∪∞n=0Gn by G∞, and we will call G∞ G’s “grid points”.

We will define a dynamic game or optimization problem in continuous time to
be the limit, in a certain sense, as n → ∞ of the sequence of corresponding games
or problems in discrete time, where game or problem n is played on grid Gn.

A.2 Dynamic optimization problems

All the continuous-time dynamic optimization problems we consider will be con-
sumption allocation problems. More precisely, they will take the form

max
{Y (t)≥0}t∈[0,∞)

U(Y ) :

∫ ∞
0

Y (t) ≤ B, U(Y ) =

∫ ∞
0

e−δtu(Y (t), t)dt (40)

for some (perhaps time-varying) flow utility function u, time preference rate δ, and
interest rate r, where B is the agent’s budget at time zero. Y (t) denotes the rate at
which resources are allocated for investment until, followed by spending at, t.
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For a given problem (u, δ, B) and a given grid sequence G, corresponding discrete-
time problem n is identical except in that it imposes the restriction that the allocation
rate Y (t) be constant throughout each member of Gn. More precisely, corresponding
discrete-time problem n takes the form

max
{Y (kgn)}∞k=0

∞∑
k=0

∫ (k+1)gn

kgn

e−δtu(Y (kgn), t)dt (41)

:
∞∑
k=0

∫ (k+1)gn

kgn

Y (kgn)dt ≤ B.

We will say that the solution to a dynamic optimization problem in continuous time
is spending schedule Y ∗(t) if the optimal spending rate at t in corresponding problem
n converges to Y ∗(t) as n→∞.

For our purposes, solutions to dynamic optimization problems in continuous
time as defined thus are equal in every respect to those as defined using the standard
tools of control theory, with two exceptions.

First, by defining the optimal spending rate at t in a continuous-time optimization
problem as above, we render it undefined when the limit of optimal spending rates
at t across the sequence of problems generated by the given grid does not exist. This
can happen only when an optimal spending schedule in the continuous-time problem,
as conventionally defined, has a discontinuity at t.

For example, consider the optimization problem defined above but with

u(X(t), t) =

{√
(X(t)), t ≤ 0.90;

0, t > 0.90.
(42)

0.90 is a discontinuity point of this optimization problem. Using grid G as defined
in (39), the element containing 0.90 in grid n is[

n/2∑
k=1

9 · 101−2k,

n/2∑
k=1

9 · 101−2k + 10−n

)
, n even; (43)

[
(n+1)/2∑
k=1

9 · 101−2k,

(n−1)/2∑
k=1

9 · 101−2k + 101−n

)
, n odd.

The optimal spending rate at t∗ = 0.90 in discrete-time problem n converges to a
value slightly below 1 across the problem subsequence indexed by even n (in which
0.90 lies near the top of the interval), and to a value slightly above 0 across the
problem subsequence indexed by odd n (in which 0.90 lies near the bottom of the
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interval). Thus, using G, the optimal spending rate at t = 0.90 in the continuous-
time problem is undefined.

If possible, this issue can be resolved by choosing a grid sequence G̃ such that

t∗ ∈ G̃∞ (44)

for all discontinuity points t∗. In the problem above, for example, we may use the
grid sequence characterized by g̃n = 0.90 · 10−n. Because Gn(0.90) is now comprised
almost entirely of points strictly greater than 0.90, for all n ≥ n = 0, we can define
X∗(0.90) = 0.

The continuous-time optimization problems considered throughout this paper
have at most one discontinuity point t∗. We will always implicitly define such a
problem by a grid sequence satisfying (44) with respect to t∗, so that the optimal
allocation is defined to be at least right-continuous; i.e., so that the optimal
allocation rate at a discontinuity point t∗, if one exists, is defined to be equal to the
limit of optimal spending rates at t∗ + ε as ε ↓ 0.

Second, we can introduce a term “dt” which functions in certain natural ways as
infinitesimal time unit: one that is held to be strictly positive but strictly less than
any positive real number. Strictly speaking, dt will denote g: the sequence of grid
element lengths, tending to zero, induced by the given grid sequence G. Given G as
defined in (39), for instance, dt = {1, 1

10
, 1
100
, ...}. It thus denotes the lengths of time

between spending rate changes that an agent faces across the sequence of dynamic
optimization problems generated by G.

This convention allows us to intuitively determine that infinitesimal deviations
from an agent’s optimal spending schedule which cannot be obtained as the limit
of optimal spending schedules over the discrete grid will not obtain in equilibrium,
because they offer the agent a strictly (albeit “infinitesimally”) lower payoff or are
strictly (“infinitesimally”) infeasible. For example, consider an agent who can allo-
cate a budget of 1 over time, without interest or time preference, and whose flow
utility in the allocation at t, denoted u(Y (t), t), is given by

u(Y (t), t) =

{√
Y (t), t < 1;

0, t ≥ 1.
(45)

That is, in effect, she must choose Y (t) for t ∈ [0, 1) to maximize∫ 1

0

√
Y (t)dt :

∫ 1

0

Y (t)dt ≤ 1. (46)

It is clear that she maximizes her utility by choosing

Y ∗(t) =

{
1, t < 1;

0, t ≥ 1.
(47)
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She also maximizes her utility, however, by deviating from Y ∗(t) on a measure-zero
set of times—e.g. by choosing

Y (t) =

{
1, t ∈ [0, 1)\{1

2
};

0, t = {1
2
} ∪ [1,∞).

(48)

Whereas Y ∗ can be obtained as the limit of optimal allocations across discrete-time
problems n, however, Y cannot. Instead of explicitly proving that a spending rate
of 0 does not obtain at t = 1

2
for a given sequence of discrete-time games, we can

simply observe that schedule Y offers the agent dt less utility than Y ∗. That is,
for each discrete-time problem n in the sequence, there is a positive utility loss of
gn (the width of the interval containing 1

2
) times

√
1 = 1 (the foregone flow utility

throughout that interval).
Likewise, we might consider the alternative allocation

Y (t) =


1, t ∈ [0, 1)\{1

2
};

4, t = 1
2
;

0, t ∈ [1,∞).

(49)

While this allocation would offer dt higher utility, across the sequence of discrete-
time problems, it is infeasible: it costs 1 + 3dt > B.

Choose a grid sequence G satisfying (44) with respect to any discontinuity point t∗.
Despite the expository examples above, throughout this paper we will consider only
problems in which flow utility u(Y (t), t) is twice differentiable, strictly increasing, and
strictly concave in its first argument. The optimal allocation Y ∗ is then characterized
by the condition that, for some λ > 0,

∂U

∂Y (t)
(Y ∗) ≤ λ, Y ∗(t) = 0; (50)

∂U

∂Y (t)
(Y ∗) = λ, Y ∗(t) > 0

for all t ∈ G∞, where

∂U

∂Y (t)
(Y ∗) =


e−δt ∂U

∂Y (t)
(Y ∗(t), t) dt, t 6= t∗;

limε↓0 e
−δt ∂U

∂Y (t)
(Y ∗(t), t+ ε) dt, t = t∗,

(51)

where t∗ denotes a discontinuity point, if one exists. By the right-continuity of Y ∗(t),
the above conditions identify Y ∗(t) across all t, not just grid points.

On verifying the above conditions, we will also be verifying the undesirably or
infeasiblity of all “infinitesimal” deviations from Y ∗. We can characterize Y ∗ as
the unique solution to the continuous-time problem, rather than merely a solution
unique up to measure-zero deviations.
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A.3 Dynamic games

The dynamic game we consider in §3.3 takes the following form. There is a grid
sequence G, as described in A.2; two players i = I, P ; and an action set Xi for each
player governing the actions i takes—in particular, the rates at which i spends—at
a given time. A history is an assignment of an action Xi,t to each player i for each
t ≥ 0. It will be denoted by

X , {(XI,t, XP,t)}∞t=0. (52)

In a slight abuse of notation, partial histories of a given history X, defined only on
subsets of the real line, will be denoted by set-subscripts on X. An open history
from t = 1 to 2, for instance, will be denoted by X(1,2). For simplicity, a partial
history truncated just before some t may be denoted by X|t (rather than X[0,t)). Xt

will denote the total spending rate at t; the partial history defined only at t, i.e. the
action profile at t, would be denoted by X{t}. Partial histories will be conjoined with

commas; so, for example, (X|t, X̃[t,t+1)) denotes the assignment of actions given by

X at times before t and by an alternative history X̃ from t to just before t+ 1.
Each player i has a budget at t = 0 of Bi and a history-dependent budget at t of

Bi(X|t).
Grid sequence G, with its sequence of grid element lengths g, generates a sequence

of discrete-time games, also indexed by n. In game n, spending rates Xi,t are chosen
simultaneously by each player i at each t ∈ Gn, and must be maintained by the
respective players throughout Gn,kn(t).

Open partial history X|t is “feasible” if Bi(X|t) ≥ 0 ∀i. The set of decision nodes
in game n is the set of open partial feasible histories ending just before a time t ∈ Gn.
We will denote this set by Dn.

Spending rate A is “feasible” for i at node X|t if Agn ≤ Bi(X|t). We will denote
the set of feasible actions at X|t ∈ Dn by Xi(X|t, n).

A strategy σi for player i in game n is a function X|t 7→ Xi(X|t, n) (for X|t ∈ Dn)
from nodes to feasible actions. The set of i’s strategies will be denoted by Σi, and
the set of all strategy profiles by Σ.

From node X|t, subsequent adoption of strategy profile σ generates a unique
and feasible history, which we will denote χ(X|t, σ). This can be shown recursively:
χ(X|t, σ)Gn,kn(t)

is feasible and uniquely determined by X|t, and χ(X|t, σ)Gn,kn(t)+m
is

likewise feasible and uniquely determined by χ(X|t, σ)[0,Gn,kn(t)+m) for all m ≥ 1.
As an important special case of this observation, note that a complete feasible

history is uniquely determined by any strategy profile σ. We may denote this history
χ(σ), omitting the first argument (which would be X∅) for simplicity.

Utility for player i as a function of the history, denoted Ui(X), is a δi-discounted
function of i’s flow utility ui. Flow utility for i at t is a function of the total spending
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rate at t:

Ui(X) =

∫ ∞
0

e−δitui(Xt)dt. (53)

A subgame-perfect equilibrium of game n is a strategy profile σ∗ such that, for
all X|t ∈ Dn, ∫ ∞

t

e−δi(s−t)u(χ(X|t, σ
∗)s)ds (54)

≥
∫ ∞
t

e−δi(s−t)u(χ(X|t, (σi, σ
∗
j ))s)ds ∀σi ∈ Σi

for both players i (where j denotes the other player).

In this context, the move to continuous time, given grid sequence G, is relatively
straightforward.

The set of decision nodes in the continuous-time game is the set of open partial
feasible histories ending just before a time t ∈ G∞, denoted D∞. A strategy for i
in the continuous-time game is a function σi : D∞ → R assigning spending rates to
nodes such that, for some sequence of strategies {σni } across discrete-time games n,
σni (X|t)→ σi(X|t) ∀X|t ∈ D∞.

A subgame-perfect equilibrium σ∗ of the continuous-time game is a strategy
profile (σ∗I , σ

∗
P ) of the continuous-time game approached (pointwise) by a sequence

of discrete-time strategy profiles {σn} such that σn is a subgame-perfect equilibrium
of game n for all n ≥ 0.

A framework along these lines is necessary when defining dynamic games in contin-
uous time in order for strategy profiles σ to generate histories X(σ), defined at least
on G∞. If strategies in continuous time were defined as arbitrary functions from
open partial feasible histories to spending rates (subject only to some feasibility con-
straint), the history generated by a given strategy profile could be almost completely
indeterminate. Consider for instance the strategy

σi(X|t) =

{
0, XI,s = 0 ∀s < t;

1, ∃s < t : XI,s 6= 0
(55)

(assuming that this is feasible). In addition to the obvious possibility that XI,s =
0 ∀s, any history X such that XI,s = 0 ∀s ≤ t and XI,s = 1 ∀s > t, for some t ≥ 0,
is compatible with σi.

Even under the framework outlined above, however, spending behavior at times
t 6∈ G∞ may not be defined by a given strategy profile σ—even if σ is a subgame-
perfect equilibrium, as defined above. Consider for example the utility function

u(Xt) =

{
1, Xt = 1;

0, Xt 6= 1.
(56)
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The following discrete-time strategy profile produces a well-defined history, and is a
subgame-perfect equilibrium, for all games n:

σnI (X|t) =

{
1, 0.90 > Gn,kn(t) + gn

2
;

0, otherwise,
(57)

σnP (X|t) =

{
0, 0.90 > Gn,kn(t) + gn

2
;

1, otherwise.
(58)

Using G as defined in (39), however, by reasoning analogous to that in the similar
example in A.2, each player’s spending at t = 0.90 oscillates between 0 and 1,
depending on the parity of n. Though the limiting strategy profile σ∗ is well-defined,
therefore, χ(σ∗)0.90 is not.

More generally, given a continuous-time strategy profile σ, χ(σ)t may be
undefined when χ(σ) (as defined by some sequences σn and G) is discontinuous
at t. As in A.2, let us call such times “discontinuity points”. The dynamic game
subgame-perfect equilibria σ∗ we consider will have at most one discontinuity point
t∗. By choosing G such that (44) holds with respect to t∗, we can ensure that χ(σ∗)
is everywhere defined.

Having chosen such a G, and using the dt notation introduced in A.2, strategy profile
σ∗ is a subgame-perfect equilibrium in continuous time if, at all X|t ∈ D∞,∫ ∞

t

e−δisu(χ(X|t, σ
∗)s)ds ≥

∫ ∞
t

e−δisu(χ(X|t, (σi, σ
∗
j ))s)ds (59)

for both players i (where j denotes the other player), for all strategies σi such that
χ(X|t, (σi, σ

∗
j ))s is defined for all s > t.

We can also characterize subgame-perfect equilibria in continuous time using an
intuitive “one-shot deviation principle”, so long as the game satisfies the standard
condition of continuity at infinity: then strategy profile σ∗ is a subgame-perfect
equilibrium if, at all X|t ∈ D∞,∫ ∞

t

e−δisu(χ(X|t, σ
∗)s)ds (60)

≥ u(A+ σ∗j (X|t))dt+

∫ ∞
t+dt

e−δisu(χ((X|t, (A, σ
∗
j (X|t))q∈[t,t+dt)), σ

∗)s)ds

for both players i (where j denotes the other player), for all spending rates A such
that χ((X|t, (A, σ

∗
j (X|t))[t,t+dt)), σ

∗)s is defined for all s > t.
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B Proofs

B.1 Proof of Proposition 1

Let
Y (t) , e−rtX(t) (61)

denote the resources allocated at time 0 for investment until, followed by spending
at, t. Let

vt(Y (t)) , e−δtu(ertY (t)) (62)

denote the discounted flow utility at t from allocation Y (t).
Since utility in spending is time-additive, differentiable, and strictly concave,

allocation Y maximizes utility iff the marginal utility of allocating resoures to each
t ∈ G∞ equals λdt (see Appendix A.2) for some constant λ:

v′(Y (t)) =
∂

∂[Y (t)]

[
e−δt

(ertY (t))1−η − 1

1− η

]
= λ ∀t, η 6= 1;

=
∂

∂[Y (t)]

[
e−δtln(ertY (t))

]
= λ ∀t, η = 1.

Taking the derivative and rearranging (and recalling the impossibility of discontinu-
ities at t 6∈ G∞), we have

Y ∗(t) = λ
−1
η e

r−rη−δ
η

t ∀t ≥ 0. (63)

Subjecting this resource allocation to the budget constraint, we have∫ ∞
0

λ
−1
η e

r−rη−δ
η

tdt = B. (64)

If δ > r(1− η), we find

λ =
(
B
rη − r + δ

η

)−η
. (65)

Then, substituting (65) into (63), and recalling that X∗(t) = ertY ∗(t), we have

X∗(t) = B
rη − r + δ

η
e
r−δ
η
t. (66)

This is the optimal spending schedule.
The payoff to following this spending schedule is then

U =



∫ ∞
0

e−δt

(
B rη−r+δ

η
e
r−δ
η t−1

)1−η

1−η dt, η 6= 1;

∫ ∞
0

e−δt ln
(
B rη−r+δ

η
e
r−δ
η
t
)
dt, η = 1,

(67)
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which simplify to

U =


B1−η

1−η

(
rη−r+δ

η

)−η
− 1

δ(1−η) , η 6= 1;

δ ln(Bδ)+r−δ
δ2

, η = 1.

(68)

If δ ≤ r(1− η) and η > 0, integral (64) is not defined for any λ. There is thus no
optimal spending schedule.
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B.2 Proof of Proposition 4

As in the proof of Proposition 1 (Appendix B.1), let

YP (t) , e−rtXP (t) (69)

denote the resources the patient party allocates at time 0 for investment until,
followed by spending at, t. Let YI(t) be defined likewise, and let Y (t) , YP (t)+YI(t).

Consider first the case in which I is warm-glow. Given that the impatient party
follows allocation YI , let

vP,t(Y (t)) , e−δP tu(ertY (t)) (70)

denote the patient party’s discounted flow utility at t from allocation YP (t).
From Proposition 1, and by the stipulation that I is warm-glow, I’s optimal

spending schedule is
YI(t) = BIαIe

(r−αI)t, (71)

independently of YP . Furthermore, the patient party’s discounted flow utility in
the collective allocation Y (t) is time-additive, differentiable, strictly increasing, and
strictly concave at each time t. Taking YI(t) as given, therefore, the patient party
maximizes his utility by setting YP (t) such that he is indifferent to marginal re-
source reallocation across times to which he is allocating resources at a positive rate,
and weakly prefers marginal resource allocation to these times to marginal resource
allocation to other times. That is, differentiating (70),

λt(YI(t), YP (t)) ,
∂

∂[YP (t)]

[
vP,t(YI(t) + YP (t))

]
(72)

= e−αP ηt(YP (t) + YI(t))
−η

= λ∗ > 0 if YP (t) > 0;

≤ λ∗ if YP (t) = 0.

Substituting (71) into (72), we have that if YP (t) = 0,

λt =
(
BIαI

)−η
e(δI−δP )t. (73)

As we can see, if YP (t) = 0, λt is strictly increasing in t. It follows from (72) that,
if YP (t) > 0 for some t, YP (s) > 0 ∀s > t. That is, there is some t∗ such that
yP (t) = 0 ∀t < t∗ and YP (t) = 0 ∀t > t∗.

Thus v′P,t(Y (t)) = λ∗ is constant for all t > t∗. This implies that the collective
allocation Y (t) (t > t∗) constitutes the patient-optimal allocation of the collective
budget allocated to t > t∗.
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This leaves us with two cases.
If t∗ = 0, then λt = λ∗ ∀t, so Y constitutes the patient-optimal allocation of the

collective budget. The impatient allocation rate of BI at t = 0 must therefore not
be greater than the patient allocation rate of the collective budget at t = 0. That is,

YI(0) = BIαI ≤ BαP . (74)

If t∗ > 0, note first that YP (t) must be continuous. If there were some t̃ at which
YP (t) were discontinuous, then, since YI(t) is continuous, Y (t) = YP (t)+YI(t) would
also be discontinuous at t̃. Because vP,t(Y (t)) is continuous in t and Y (t), it too
would then be discontinuous at t̃. The patient party would then be able to increase
his utility by reallocating marginal funds from t̃ to t̃− dt or t̃+ dt.

In particular, YP is continuous at t∗. Since YP (t) = 0 ∀t < t∗, it follows that
YP (t∗) = 0.

Furthermore, since λt(YP (t), YI(t)) is continuous in YP (t), YI(t), and t, and since
λt(YP (t), YI(t)) = λ∗ ∀t > t∗, we now have λt∗ = λ∗. Thus Y (t∗) = YI(t

∗) constitutes
the patient-optimal allocation rate of the collective resources remaining at t∗.

That is,
BIαIe

−αI t∗ =
(
BP +BIe

−αI t∗
)
αP . (75)

Rearranging, we have

t∗ = ln
(BI

BP

αI − αP
αP

)/
αI . (76)

Now, multiplying both sides of (75) by eαI t
∗

and substituting (76) for t∗, we have

BIαI =
(
BP

(BI

BP

αI − αP
αP

)
+BI

)
αP

> BαP , (77)

because, from (76),

t∗ > 0 =⇒ BI

BP

αI − αP
αP

> 1. (78)

The inequality on YI(0) provided by (74) and (77) thus characterizes whether t∗ = 0
or t∗ > 0. In particular, solving it for t∗, we have

t∗ =

{
0 BI

BP

αI−αP
αP

≤ 1

ln
(
BI
BP

αI−αP
αP

)/
αI

BI
BP

αI−αP
αP

> 1
(79)

which reduces to

t∗ = max
(

0, ln
(BI

BP

αI − αP
αP

)/
αI

)
. (80)
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Finally, observe that the collective budget at t∗ is

BIe
(r−αI)t∗ +BP e

rt∗ (81)

in either case, and recall that XP (t) will fill the gap between XI(t) and the patient-
optimal spending rate of the collective budget following t∗. It follows immediately
that

XP (t) =

{
0, t < t∗;(
BIe

(r−αI)t∗ +BP e
rt∗
)
αP e

(r−αP )(t−t∗) −BIαIe
(r−αI)t, t ≥ t∗.

Now consider the case in which P is warm-glow. Given that the patient party follows
allocation YP , let

vI,t(Y (t)) , e−δI tu(ertY (t)) (82)

denote the impatient party’s discounted flow utility at t from allocation YI(t).
From Proposition 1, and by the stipulation that P is warm-glow, P ’s optimal

spending schedule is
YP (t) = BPαP e

(r−αP )t, (83)

independently of YI . Furthermore, the impatient party’s discounted flow utility in
the collective allocation Y (t) is time-additive, differentiable, strictly increasing, and
strictly concave at each time t. Taking YP (t) as given, therefore, the impatient
party maximizes her utility by setting YI(t) such that she is indifferent to marginal
resource reallocation across times to which she is allocating resources at a positive
rate, and weakly prefers marginal resource allocation to these times to marginal
resource allocation to other times. That is, differentiating (82),

λt(YI(t), YP (t)) ,
∂

∂[YI(t)]

[
vI,t(YI(t) + YP (t))

]
(84)

= e−αIηt(YI(t) + YP (t))−η

= λ∗ > 0 if YI(t) > 0;

≤ λ∗ if YI(t) = 0.

Substituting (83) into (84), we have that if YI(t) = 0,

λt =
(
BPαP

)−η
e(δP−δI)t. (85)

As we can see, if YI(t) = 0, λt is strictly increasing in t. It follows from (84) that,
if YI(t) > 0 for some t, YI(s) > 0 ∀s > t. That is, there is some t∗ such that
YI(t) > 0 ∀t < t∗ and YI(t) = 0 ∀t > t∗.
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Thus v′I,t(Y (t)) = λ∗ is constant for all t < t∗. This implies that the collective
allocation Y (t) (t < t∗) constitutes the impatient-optimal allocation of the collective
budget allocated to t < t∗; for some LI ,∫ t∗

0

LIe
−αI tdt = BI +BP (1− e−αP t∗). (86)

Furthermore, by arguments analogous to those following (74), YI(t
∗) = 0. Thus t∗

satisfies

LIe
−αI t∗ = BPαP e

−αP t∗ =⇒ LI = BPαP e
(αI−αP )t∗ (87)

Substituting (87) into (86) and simplifying gives

αI
bP
eαP t

∗ − αP eαI t
∗

= αI − αP , (88)

which cannot be further simplified.
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B.3 Proof of Proposition 5

Suppose
∃ t, t ∈ G∞ > t : XP (t) > 0, XI(t) > 0. (89)

If
(XI(t) +XP (t))−η > e(r−δI)(t−t)(XI(t) +XP (t))−η, (90)

then I can do better to reallocate funding from t to t. Likewise, if

(XI(t) +XP (t))−η < e(r−δP )(t−t)(XI(t) +XP (t))−η, (91)

then P can do better to reallocate funding from t to t. Since δI > δP , at least one
of these two inequalities must obtain. Thus (89) cannot obtain in equilibrium.

It follows that there is some time t∗ such that I is the sole funder for t < t∗ and
P is the sole funder for t > t∗. As this suggests, t∗ is a discontinuity point; let us
therefore use the grid sequence G characterized by gn = t∗ · 10−n. Note that this
implies that P funds the good at t∗.

As in Proposition 1, observe that each party i does best to spend such that the
δi-discounted marginal value of spending at any time is equal to that of investing to
spend at any subsequent time at which she spends. This will happen precisely when

XI(t) = LIe
(r−αI)t, t ∈ [0, t∗); (92)

XP (t) = LP e
(r−αP )t, t ∈ [t∗,∞),

for some constants LI , LP .
From the budget constraints∫ t∗

0

LIe
−αI tdt = BI ; (93)∫ ∞

t∗
LP e

−αP tdt = BP ,

we then have

LI = BIαI

(
1− e−αI t∗

)−1
; (94)

LP = BPαP e
−αP t∗ .

Finally, observe that the spending rate must be continuous at t∗; limt↑t∗ XI(t) =
XP (t∗). If the spending rate rose discontinuously at t∗, P would do better to real-
locate some spending from t∗ to t∗ − dt. Likewise, if the spending rate fell discon-
tinuously, I would do better to reallocate marginal spending from t∗ − dt to t∗. We
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therefore have

LIe
(r−αI)t∗ = LP e

(r−αP )t∗

=⇒ t∗ =
1

αI − αP
ln
(LI
LP

)
. (95)

Substituting (95) into (94) and simplifying, we get

LI = BIαI +BPαP ; (96)

LP = BPαP

(
1 +

BIαI
BPαP

)αP
αI .

Finally, substituting (96) into (92) and (95), we have our final expressions for XI(t)
and XP (t) and for t∗ respectively.
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B.4 Proof of Proposition 6

B.4.1 Preliminaries

Let XP,t(XI) and YP,t(XI) denote the spending schedule and allocation, respectively,
that P adopts in equilibrium given I’s choice of spending schedule XI(t) (and al-
location YI(t)). Let TP (XI) denote {t : XP,t(XI) > 0}, and let TI(XI) denote
{t : XI(t) > 0}. Let Y (XI) ≤ BI denote the budget that I allocates to spending at
times t ∈ TP (XI).

P will spend such that the δP -discounted marginal value of spending at any
time s ∈ TP (XI) is equal to that of investing to spend at any subsequent time
t ∈ TP (XI), t > s. As in Proposition 1, this will happen precisely when

XP (t) = LP e
(r−αP )t ∀t ∈ TP (XI), (97)

for some constant LP . (We will ignore the irrelevant possibility of measure-zero
deviations on P ’s part.) Furthermore, LP will be chosen so that XP satisfies the
budget constraint∫

TP (XI)

e−rt(XI(t) +XP,t(XI))dt = BP + Y (XI). (98)

The resulting {XI(t) + XP,t(XI)}t∈TP (XI) will implement the unique δP -optimal
allocation of resources BP + Y (XI) across TP (XI).

Let T̃ ⊂ TP (XI) denote a set of times such that∫
T̃

e−rt(XI(t) +XP,t(XI))dt = Y (XI). (99)

Such T̃ must exist, by the continuity of total resource allocation with respect to time,
and that if Y (XI) > 0 any such T̃ must have positive measure.

Suppose Y (XI) > 0, and consider a spending schedule X̃I such that

X̃I(t) =


XI(t), t 6∈ TP (XI);

XI(t) +XP,t(XI), t ∈ T̃ ;

0, t ∈ TP (XI)\T̃.
(100)

P will still be able to achieve a collective spending rate of XI(t) + XP,t(XI) across
TP (XI), by spending at rate

XP,t(X̃I) =

{
0, t 6∈ TP (XI)\T̃ ;

XI(t) +XP,t(XI), t ∈ TP (XI)\T̃.
(101)
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This collective spending rate still produces the unique δP -optimal allocation of re-
sources BP + Y (XI) across TP (XI). Furthermore, because X̃I(t) = XI(t) ∀t 6∈
TP (XI), P still prefers spending within TP (XI) to spending outside TP (XI). Given
X̃I , therefore, P does indeed best respond with the schedule XP (X̃I) defined by
(101).

X̃I thus induces the same collective spending schedule as XI , across all t. How-
ever, Y (X̃I) = 0. We have found that, for any spending schedule XI , there is a
spending schedule X̃I such that

Y (X̃I) = 0 (102)

and such that I is indifferent between XI and X̃I .

Observe by the reasoning of Proposition 1 that, given a feasible spending schedule
XI satisfying (102), I has a weakly preferred feasible spending schedule X̃I , also
satisfying (102), with

X̃I(t) =

{
0, t 6∈ TI(XI);

max(LIe
(r−αI)t, LP e

(r−αP )t), t ∈ TI(XI)
(103)

for some LI > 0 and for LP as given by (98). Furthermore, if XI is a positive-measure
deviation from X̃I , X̃I is strictly preferred to XI .

That is, I always does better to shift her resource allocation from times offering
her lower to times offering her higher discounted marginal utility, at least subject to
the constraint that such a shift does not render her spending at a time low enough
that P responds by altering his spending schedule.

Consider a feasible allocation YI (and corresponding spending schedule XI) satisfying
(102) and (103). We must have

YI(t) =

{
LIe

−αI t, t ∈ TI(XI) ∩ [0, q];

LP e
−αP t, t ∈ TI(XI) ∩ [q,∞),

(104)

for some LI > 0, LP > 0, where

q , ln
(LP
LI

)/
(αP − αI). (105)

Define

Q(q) ,
∫
TP (XI)∩[0,q)

LP e
−αP t, (106)

Q(q) ,
∫
T̃I(XI)∩[max(q,q),∞)

LP e
−αP t.



PUBLIC GOODS UNDER TIME PREFERENCE HETEROGENEITY 53

Since Q(q) weakly increases in q from zero to BP > 0, Q(q) weakly decreases in q

from a nonnegative value to zero, and Q(q)− Q(q) is weakly decreasing in q for all

q > 0, there exists a (not necessarily unique) q∗ ≥ 0 such that Q(q∗) = Q(q∗) , Q.
(Q = 0 iff I allocates nothing past q.)

Fixing q∗, now consider the allocation

ỸI(t) =


LP e

−αP t, t ∈ TP (XI) ∩ [0, q∗);

0, TI(XI) ∩ [max(q, q∗),∞);

YI(t), elsewhere.

(107)

It follows from (106) that P ’s unique best response (up to measure-zero deviations)
to a shift from YI to ỸI is to shift his spending from TP (XI) ∩ [0, q∗) to TI(XI) ∩
[max(q, q∗),∞), leaving his spending elsewhere unchanged; this alone maintains (97)
for some LP . It likewise follows from (106) that ỸI is affordable for I, and that it
induces the same collective allocation as YI . Finally, note that

t < q ∀t ∈ TI(X̃I),

ỸI(t) = LIe
−αI t ∀t ∈ TI(X̃I) ∩ [inf(TP (X̃I)), q). (108)

Thus, for any feasible allocation YI satisfying (102) and (103), there is an equally
preferred feasible allocation ỸI satisfying (102) and (108) such that I is indifferent
between YI and ỸI .

From here we will proceed differently depending on the value of η.

B.4.2 η > 1 case

Consider a feasible allocation YI (and corresponding spending schedule XI) satisfying
(102) and (108). Define

Q(q) ,
∫
TP (XI)∩[0,q)

e−αP tdt, (109)

Q(q) ,
∫
TI(XI)∩[q,q)

e−αP tdt. (110)

Since Q(q) weakly increases in q from zero to a positive value, Q(q) weakly decreases

in q from a positive value to zero, and Q(q)−Q(q) is strictly decreasing in q for all

q > 0, there exists a unique q∗ > 0 such that Q(q∗) = Q(q∗) , Q. (Q = 0 iff I
spends her entire budget before P spends any positive quantity.) Let

T (XI) , TP (XI) ∩ [0, q∗), (111)

T (XI) , TI(XI) ∩ [q∗, q).
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(We will omit the XI arguments to T and T when the implicit spending schedule is
clear.) Define LP as the value such that YP (t) = LP e

−αP t ∀t ∈ TP (XI). It follows
from (102) that YI(t) ≥ LP e

−αP t ∀t ∈ TI(XI).
If Q > 0, choose ε > 0, and partition T into (not necessarily nonempty) elements

T i,ε , T ∩ [q∗ + i− ε, q∗ + i) (112)

for all i ∈ εN, where εN denotes {ε, 2ε, ...}. Also, define

t0 , 0,

ti , min
{
q :

∫
T∩[0,q)

e−αP tdt =

∫
T∩[q∗,q∗+i)

e−αP tdt
}
, (113)

T i,ε , T ∩ [ti−ε, ti), (114)

i(t, ε) , i given t ∈ T i,ε ∪ T i,ε. (115)

Let
S(XI) ,

{
s ∈ T (XI) : lim

ε→0

(
ti(s,ε) − ti(s,ε)−ε

)
> 0
}
. (116)

It follows from (113) that, for all s ∈ S(XI),

∃φ > 0 :

∫
T∩[0,ts)

e−αP tdt =

∫
T∩[0,ts+φ)

e−αP tdt =

∫
T∩[q∗,s)

e−αP tdt. (117)

Given s ∈ S(XI), let φs denote the supremum φ satisfying (117). Thus, for each
s ∈ S(XI), there is a maximal near-empty subinterval Φ(s) , [ts, φs) of [0, q∗) such
that µ(T ∩ Φ(s)) = 0, where µ denotes the Lebesgue measure. Because any interval
can be partitioned into at most countably many subintervals, there are at most
countably many such Φ. Furthermore, for each Φ, we must have

µ
(
{s : Φ(s) = Φ}

)
= 0; (118)

otherwise the integral on the right-hand side of (117) could not be equal for all such
s. Therefore µ(S(XI)) = 0.

It follows that, given any allocation YI satisfying (102) and (108), there is a
corresponding allocation

ỸI(t) =

{
YI(t), t 6∈ S(XI);

0, t ∈ S(XI),
(119)

and corresponding X̃I , also satisfying (102) and (108), but for which we also have

S(X̃I) = ∅. (120)
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Of course XP (X̃I) = XP (XI) everywhere except at S(XI), and I is indifferent
between YI and ỸI .

Retaining our formalism from (109) onward, consider an allocation YI (and corre-
sponding spending schedule XI) satisfying (102), (108), and (120) but for which
T (XI)) ∪ T (XI) 6= ∅. Consider the allocation

ỸI(t) =


YI(t), t 6∈ T ∪ T ;

LIe
(αP−αI)(q∗+i(t,ε))−αP (ti(t,ε)+ε), t ∈ T ;

0, t ∈ T
(121)

(and corresponding spending schedule X̃I). Note that

T (X̃I) = T (X̃I) = ∅. (122)

If µ(T (XI)) = 0 (or equivalently, µ(T (XI)) = 0), it is clear that ỸI is feasible
and that I is indifferent between YI and ỸI . Let us now consider the case in which
µ(T (XI)) > 0.

To demonstrate that ỸI is feasible, let us show that its allocation to each T i,ε is

weakly (and indeed strictly) less than YI ’s allocation to the corresponding T i,ε. From
(113) and (114), we have ∫

T i,ε

e−αP tdt =

∫
T i,ε

e−αP tdt. (123)

Observe that t < ti ∀t ∈ T i,ε and t ≥ q∗+ i− ε ∀t ∈ T i,ε. Also, from (108) and (112),

YI(t) ≥ LIe
−αI(q∗+i) ∀t ∈ T i,ε. (124)

Thus (123) gives ∫
T i,ε

e−αP tidt ≤
∫
T i,ε

e−αP (q
∗+i−ε)dt (125)

=⇒
∫
T i,ε

LIe
(αP−αI)(q∗+i)−αP (ti+ε)dt ≤

∫
T i,ε

LIe
−αI(q∗+i)dt

<

∫
T i,ε

LIe
−αI tdt. (126)

Summing across i ∈ εN, it follows that, since YI is feasible, ỸI is also feasible.

Now let us show that, for sufficiently small ε, ỸI is preferred to YI .
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First, for any given ε, we can decompose the move from YI to ỸI into a sequence
of shifts from YI(t) to ỸI(t) for t ∈ T i,ε ∪ T i,ε for each i, in which she maintains

the original allocation elsewhere. That is, she can shift spending back from T to T
by shifting spending back from T i,ε to T i,ε for each i. Each shift will be affordable,
as shown by (126). Furthermore, from (113) and (114) we see that, in equilibrium,
P will (barring measure-zero deviations) respond to each shift by shifting his own
allocated funds from T i,ε to T i,ε, leaving his spending elsewhere unchanged; this
alone will maintain condition (97) for some LP . Finally, observe that the shift must
increase flow spending and thus utility throughout T i,ε and decrease it throughout

T i,ε, and that discounted flow utility must monotonically decrease in t throughout
both TP (XI) and TI(XI).

I’s net utility gain from shift i is thus bounded below by

1

1− η

[∫
T i,ε

e−δI ti
((
LIe

[(αP−αI)(q∗+i)−αP (ti+ε)+rti]
)1−η − (LP e(r−αP )ti−ε)1−η)dt

+

∫
T i,ε

e−δI(q
∗+i−ε)

((
LP e

(r−αP )(q∗+i)
)1−η − (LIe(r−αI)(q∗+i−ε))1−η)dt]. (127)

From (123), the fact that t ≥ ti−ε ∀t ∈ T i,ε, and the fact that t < q∗+ i ∀t ∈ T i,ε, we
have ∫

T i,ε

e−αP (q
∗+i)dt ≤

∫
T i,ε

e−αP ti−εdt. (128)

After rearranging (127) and making the substitution from (128), we see that I’s net
utility gain from shift i is further bounded below by

1

η − 1

(
LP e

(r−αP )ti−ε
)1−η ∫

T i,ε

e−αP (q
∗+i)dt (129)

[(
1−

(LI
LP

e(αP−αI)(q
∗+i)+(r−αP )(ti−ti−ε)−αP ε

)1−η)
eαP ti−ε−δI ti

−
(

1−
(LI
LP

e(αP−αI)(q
∗+i)−(r−αI)ε

)1−η)
e(1−η)(r−αP )(q

∗+i−ti−ε)−δI(q∗+i−ε)+αP (q∗+i)
]
.

By (116) and (120),

lim
ε→0

ti(t,ε) = lim
ε→0

ti(t,ε)−ε = tt−q∗ ∀t ∈ T . (130)

Also, by (112) and (115),

lim
ε→0

i(t, ε) = t− q∗ ∀t ∈ T . (131)
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Furthermore, ti(t,ε) − ti(t,ε)−ε is uniformly bounded by q∗, and i(t, ε) − (t − q∗) by

q − q∗, for t ∈ T ; so these two convergences are uniform throughout T . It follows
that

lim
ε→0

[
1−

(LI
LP

e(αP−αI)(q
∗+i(t,ε))+(r−αP )(ti(t,ε)−ti(t,ε)−ε)−αP ε

)1−η]
(132)

= lim
ε→0

[
1−

(LI
LP

e(αP−αI)(q
∗+i(t,ε))−(r−αI)ε

)1−η]
(133)

=1−
(LI
LP

e(αP−αI)t
)1−η

(134)

for all t ∈ T , and that the convergence of (132) and (133) to (134) is uniform
throughout T .

By (102) and (108),

LIe
−αI t > LP e

−αP t ∀t <∈ [q∗, q), (135)

so LI
LP
e(αP−αI)t > 1 for all such t. By our assumption of η > 1, term (134) is positive

for all t ∈ T .
The net utility gain for I from the shift from YI to ỸI—the sum of (136) across

i ∈ εN—equals

1

η − 1

∫
T

(
LP e

(r−αP )ti(t,ε)−ε
)1−η

e−αP (q
∗+i(t,ε)) (136)

[(
1−

(LI
LP

e(αP−αI)(q
∗+i(t,ε))+(r−αP )(ti(t,ε)−ti(t,ε)−ε)−αP ε

)1−η)
eαP ti(t,ε)−ε−δI ti(t,ε)

−
(

1−
(LI
LP

e(αP−αI)(q
∗+i(t,ε))−(r−αI)ε

)1−η)
e(1−η)(r−αP )(q

∗+i(t,ε)−ti(t,ε)−ε)−δI(q∗+i(t,ε)−ε)+αP (q∗+i(t,ε))
]
dt.

From (130) to (135), this converges, as ε→ 0, to a value strictly greater than

L1−η
P

η − 1

∫
T

(
1−

(LI
LP

e(αP−αI)t
)1−η)(

e(δP−δI)tt−q∗ − e(δP−δI)t
)
dt, (137)

which is positive. Therefore the total net utility gain is positive; I strictly prefers
ỸI , when constructed with a small ε, to YI .

We have shown that, if η > 1, for any allocation YI satisfying (102), (108), and
(120), but not (122), there is a weakly preferred allocation ỸI satisfying all four
conditions, and that the preference is strict if µ(T (YI)) > 0.

If η > 1, given an allocation YI (and corresponding spending schedule XI) satisfying
(102), (108), (120), and (122), there is a time t∗ (in the case of the X̃I constructed
just above, equal to q∗) such that

XP,t(XI) = 0 for t < t∗ and XI(t) = 0 for t ≥ t∗. (138)
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We will now find the allocation X∗I satisfying (138) that (uniquely, up to measure-
zero deviations) maximizes I’s utility in equilibrium.

Because P invests his resources until t∗ and subsequently allocates them patient-
optimally, we have

XP,t =

{
0, t < t∗;

LP e
(r−αP )t, t ≥ t∗,

(139)

where LP satisfies∫ ∞
t∗

LP e
−αP tdt = BP =⇒ LP = BPαP e

αP t
∗
. (140)

Likewise, fixing t∗, I’s most preferred XI satisfying (138) must spend I’s resources
impatient-optimally up to t∗. Spending impatient-optimally up to arbitrarily high
t∗ will not be compatible with (108), and thus not with (138), in equilibrium; P
will eventually prefer spending to waiting until t∗. Nevertheless, we will find the t∗

that would be optimal for I if I could spend impatient-optimally up to t∗, instead
of eventually having to switch to a patient-optimal schedule (as in (104)). We will
then see that spending impatient-optimally up to the optimal t∗ is indeed compatible
with (108) and thus (138) in equilibrium.

So we have

X∗I (t) =

{
LIe

(r−αI)t, t < t∗;

0, t ≥ t∗,
(141)

where LI satisfies ∫ t∗

0

LIe
−αI tdt = BI =⇒ LI =

BIαI
1− e−αI t∗

. (142)

Given t∗, therefore, I attains utility

1

1− η

[∫ t∗

0

e−δI t
((
BIαI

(
1− e−αI t∗

)−1
e(r−αI)t

)1−η
− 1
)
dt (143)

+

∫ ∞
t∗

e−δI t
((
BPαP e

αP t
∗
e(r−αP )t

)1−η
− 1
)]
dt.

Simplifying and integrating this gives

1

1− η

[
B1−η
I α−ηI

(
1− e−αI t∗

)η
+

(BPαP )1−η

δI + αP − δP
e−ηαI t

∗ − 1

δI

]
. (144)

From the first order condition in t∗, we find a unique maximum at

t∗ = ln
( BIαI
BPαP

γ + 1
)/
αI . (145)
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Substituting (145) into (142) and (140), we find that the impatient-optimal allocation
rate approaching t∗, and the patient-optimal allocation rate at t∗, are respectively

LIe
−αI t∗ = BPαP/γ, (146)

LP e
−αP t∗ = BPαP .

Since γ < 1, spending impatient-optimally up to t∗ is compatible with (108) in
equilibrium, as promised. X∗I is thus the unique optimal spending schedule among
those satisfying (102), (108), (120), and (122).

The proof is completed in B.4.5.

B.4.3 η = 1 case

Follow the proof of the η > 1 case up to line (126). By the reasoning preceding
(127), we can decompose the spending shift from T to T , which constitutes the shift
from YI to ỸI , into shifts from T i,ε to T i,ε for each i ∈ εN; and having done so, I’s
net utility loss from shift i is bounded above by∫

T i,ε

e−δI ti,ε
(

ln(LP e
(r−δP )ti−ε,ε

)
− ln

(
LIe

[(δP−δI)(q∗+i)−δP (ti,ε+ε)+rti,ε]
))
dt

+

∫
T i,ε

e−δI(q
∗+i−ε)

(
ln
(
LIe

(r−δI)(q∗+i−ε)
)
− ln

(
LP e

(r−δP )(q∗+i)
))
dt. (147)

After rearranging, and by (128), this implies that that I’s total net utility loss across
i is further bounded above by∫
T
e−δP (q

∗+i(t,ε))
[
eδP ti(t,ε)−ε−δI ti(t,ε)

(
ln
(
LP
LI

)
+ r(ti(t,ε)−ε − ti(t,ε)) + (δI − δP )(q∗ + i(t, ε)) + δP ε

)
−e(δP−δI)(q∗+i(t,ε))−δIε

(
ln
(
LP
LI

)
+ (δI − δP )(q∗ + i(t, ε)) + (r − δI)ε

)]
dt. (148)

By the uniform convergences of (130) and (131), (148) converges to zero as ε → 0.
Thus, for any ` > 0,

|UI(XI +XP (XI))− UI(X̃I +XP (X̃I))| < ` (149)

given any sufficiently small ε.
Denote the spending schedule X̃I constructed on the basis of a given ε > 0 by X̃ε

I .
Observe that, as ε→ 0, X̃ε

I(t) converges uniformly throughout [0,∞) to a spending
schedule we might denote X̃0

I , which satisfies (102), (108), (120), and (122), and such
that

|UI(XI +XP (XI))− UI(X̃0
I +XP (X̃0

I ))| < ` ∀` > 0

=⇒ X̃0
I ∼I XI . (150)
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Let us restrict ourselves to considering spending schedules satisfying (102), (108),
(120), and (122). By the reasoning of (138)–(142), the optimal spending schedule
for I in this class—which we may denote X∗I—will offer I a utility of∫ t∗

0
e−δI t ln

(
BIδI

1−e−δI t∗ e
(r−δI)t

)
dt+

∫∞
t∗
e−δI t ln

(
BP δP e

δP t
∗
e(r−δP )t

)
dt (151)

for some t∗. Simplifying and integrating this gives

e−δI t
∗

δI

(
ln(BP δP )− δP

δI
+ δIt

∗ + 1
)

+ e−δI t
∗−1

δI
ln
(

1−e−δI t∗

BIδI

)
− 1

δI
+ r

δ2I
. (152)

From the first order condition in t∗, we find a unique maximum at

t∗ = ln
(

1 +
BIδI
BP δP

e
δP
δI
−1
)/
δI . (153)

Substituting (153) into (142) and substituting both terms into (141), we obtain our
expression for X∗I .

The proof is completed in B.4.5.

B.4.4 η < 1 case

Let us pick up from what immediately precedes B.4.2.
Consider a feasible allocation YI (and corresponding spending schedule XI) sat-

isfying (102) and (108). Define

Q(q) ,
∫
TI(XI)∩[0,q)

e−αP tdt, (154)

Q(q) ,
∫
TP (XI)∩[q,q)

e−αP tdt. (155)

Since Q(q) weakly increases in q from zero to a positive value, Q(q) weakly decreases

in q from a nonnegative value to zero, and Q(q)−Q(q) is strictly decreasing in q for

all q > 0, there exists a unique q∗ ≥ 0 such that Q(q∗) = Q(q∗) , Q. (Q = 0 iff P is
the sole spender before q∗, and I is the sole spender from q∗ to q), for some q∗.) Let

T (XI) , TI(XI) ∩ [0, q∗), (156)

T (XI) , TP (XI) ∩ [q∗, q).

(We will omit the XI arguments to T and T when the implicit spending schedule is
clear.) Define LP as the value such that YP (t) = LP e

−αP t ∀t ∈ TP (XI). It follows
from (102) that YI(t) ≥ LP e

−αP t ∀t ∈ TI(XI).
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If Q > 0, choose ε > 0. Partition T and define T i,ε, ti, T i,ε, i(t, ε), and S(XI) as
in (112)–(116).

By the reasoning up to (120), given any allocation YI satisfying (102) and (108),
there is a corresponding allocation ỸI (and corresponding spending schedule X̃I)
also satsifying (102) and (108) but for which we also have (120), such that ỸI ∼I YI .

Consider a feasible allocation YI (and corresponding spending schedule XI) satisfying
(102), (108), and (120) but for which T (XI) ∪ T (XI) 6= ∅. Consider the allocation

ỸI(t) =


YI(t), t 6∈ T ∪ T ;

0, t ∈ T ;

LIe
αP (ti(t,ε)−ε−q∗−i(t,ε))−αI ti(t,ε) , t ∈ T

(157)

(and corresponding spending schedule X̃I). Note that

T (X̃I) = T (X̃I) = ∅. (158)

If µ(T (XI)) = 0 (or equivalently, µ(T (XI)) = 0), it is clear that ỸI is feasible
and that I is indifferent between YI and ỸI . Let us now consider the case in which
µ(T (XI)) > 0.

To demonstrate that ỸI is feasible, let us show that its allocation to each T i,ε
is weakly (and indeed strictly) less than YI ’s allocation to the corresponding T i,ε.
From (113) and (114), we have (123). Also, observe that t ≥ ti(t,ε)−ε ∀t ∈ T i,ε and

t < q∗ + i ∀t ∈ T i,ε. Also, from (108) and (112),

YI(t) ≥ LIe
−αI ti ∀t ∈ T i,ε. (159)

Thus ∫
T i,ε

e−αP (q
∗+i)dt ≤

∫
T i,ε

e−αP tidt (160)

=⇒
∫
T i,ε

LIe
αP (ti−ε−q∗−i)−αI tidt ≤

∫
T i,ε

LIe
−αI tidt

<

∫
T i,ε

LIe
−αI tdt. (161)

Summing across i ∈ εN, it follows that, since YI is feasible, ỸI is also feasible.
By calculations precisely analogous to those from (126) to (137)—here simply

moving I’s spending forward from T to T , rather than the reverse—the total net
utility gain for I from the shift from YI to ỸI converges, as ε→ 0, to a value strictly
greater than (137) (here slightly rearranged):

L1−η
P

1− η

∫
T

((LI
LP

e(αP−αI)t
)1−η

− 1
)(
e(δP−δI)tt−q∗ − e(δP−δI)t

)
dt. (162)
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Though η < 1, this is still positive: both the coefficient outside the integral and the
first product of the integral have changed sign. Therefore the total net utility gain
is positive; I strictly prefers ỸI , when constructed with a small ε, to YI .

We have shown that, if η < 1, for any allocation YI satisfying (102), (108), and
(120), but not (122), there is a weakly preferred allocation ỸI satisfying all four
conditions, and that the preference is strict if µ(T (YI)) > 0.

If η < 1, given an allocation YI (and corresponding spending schedule XI) satisfying
(102), (108), (120), and (122), there are times t∗ and t∗ (in the case of the X̃I

constructed just above, equal to q∗ and q respectively) such that

XP,t(XI) = 0 for t ∈ [t∗, t
∗) and XI(t) = 0 for t 6∈ [t∗, t

∗). (163)

Consider a feasible allocation YI (and corresponding spending schedule XI) sat-
isfying (163) for some t∗(XI), t

∗(XI). (Where clear, we will suppress the argu-
ment). Because P , in equilibrium, allocates his resources patient-optimally across
[0, t∗) ∪ [t∗,∞), we have

XP,t(XI) =

{
0, t ∈ [t∗, t

∗);

LP e
(r−αP )t, t ∈ [0, t∗) ∪ [t∗,∞),

(164)

where LP satisfies

BP =

∫ t∗

0

LP e
−αP tdt+

∫ ∞
t∗

LP e
−αP tdt

=⇒ LP =
BPαP

1 + e−αP t∗ − e−αP t∗
. (165)

Likewise, I’s most preferred XI(s) satisfying (163) must spend I’s resources
impatient-optimally across [t∗, t

∗). Spending impatient-optimally for an arbitrar-
ily long interval will not be compatible with (108), and thus not with (163), in
equilibrium; P will eventually prefer spending during the interval. Nevertheless, we
will find the t∗, t

∗ that would be optimal for I if I could spend impatient-optimally
across an arbitrary [t∗, t

∗), instead of eventually having to switch to an impatient-
optimal schedule (as in (104)). We will then see that the impatient-optimal schedule
satisfying (163) is indeed compatible with (108) and thus (163) in equilibrium.

So we have

XI(t) =

{
LIe

(r−αI)t, t ∈ [t∗, t
∗);

0, t ∈ [0, t∗) ∪ [t∗,∞),
(166)

where LI satisfies∫ t∗

t∗

LIe
−αI tdt = BI =⇒ LI =

BIαI
e−αI t∗ − e−αI t∗

. (167)
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XI therefore offers I utility[∫ t∗

0

e−δI t
(
LP e

(r−αP )t
)1−η

dt+

∫ t∗

t∗

e−δI t
(
LIe

(r−αI)t
)1−η

+

∫ ∞
t∗

e−δI t
(
LP e

(r−αP )t
)1−η

dt− 1

δI

]
1

1− η
. (168)

Fixing t∗ and LI , it follows from (167) that

t∗ = − ln
(
e−αI t∗ − BIαI

LI

)/
αI . (169)

Substituting (169) and (165) for t∗ and LP respectively, integrating, and simplifying
yields

[(
BPαP

1 +
(
e−αI t∗ − BIαI

LI

)αP
αI − e−αP t∗

)1−η 1 +
(
e−αI t∗ − BIαI

LI

)αP+δI−δP
αI − e−(αP+δI−δP )t∗

αP + δI − δP

+ L−ηI BI −
1

δI

]
1

1− η
. (170)

Differentiating with respect to t∗ (and re-introducing LP in places, for clarity) gives

− 1

αP + δI − δP
L2−η
P

BPαP

(
1 + e−(αP+δI−δP )t

∗ − e−(αP+δI−δP )t∗
)

(171)

+
L1−η
P

1− η

(
e−(αP+δI−δP )t∗ −

(
e−αI t∗ − BIαI

LI

)αI−αP
αI

(η−1)
e−αI t∗

)
.

The first of these two added expressions is negative. The second is also negative,
as we can see from the fact that it is zero when the BI term explicitly represented
equals zero, and decreases as this term increases.

Thus, for any feasible spending schedule XI satisfying (102), (108), (120), and
(122) but not

t∗(XI) = 0, (172)

there is a strictly preferred spending schedule X̃I (with, incidentally, equal LI) sat-
isfying all five conditions.

I’s favorite spending schedule in this class is derived—for all η 6= 1—in (139)–
(146). Let us denote it by X∗I , as done there.
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B.4.5 Last steps

Letting X∗P (t) denote XP,t(X
∗
I ) and

Z , 1 +
BIαI
BPαP

γ, (173)

it follows from (139)–(142), (145) in the η 6= 1 cases, and (153) in the η = 1 case
that

X∗I (t) =

{
BI

Z
Z−1αIe

(r−αI)t, t < t∗;

0, t ≥ t∗
(174)

and

X∗P (t) =

{
0, t < t∗;

BPZ
αP
αI αP e

(r−αP )t, t ≥ t∗
(175)

for all η > 0, where
t∗ , ln(Z)/αI . (176)

X∗I is strictly preferred to any alternative spending schedule X0
I that is a positive-

measure deviation from X∗I (a “PMD”). This follows straightforwardly from the
constructive derivation of X∗I , as summarized:

� For any PMD X0
I , we can construct a PMD X1

I satisfying (102) such that
X1
I ∼I X0

I .

� For any PMD X1
I satisfying (102):

– If X1
I does not satisfy (103) almost everywhere, we can construct a

spending schedule X1′
I satisfying (102) and (103) such that X1′

I �I X1
I .

X∗I �I X1′
I , by the full derivation above, so X∗I �I X1

I ∼I X0
I .

– If X1
I does satisfy (103) almost everywhere, we can construct a PMD X2

I

satisfying (102) and (103) such that X2
I ∼I X1

I .

� For any PMD X2
I satisfying (102) and (103), we can construct a PMD X3

I

satisfying (102) and (108) such that X3
I ∼I X2

I .

� For any PMD X3
I satisfying (102) and (108), we can construct a PMD X4

I

satisfying (102), (108), and (120) such that X4
I ∼I X3

I .

� For any PMD X4
I satisfying (102), (108), and (120), we can construct a spend-

ing schedule X5
I satisfying (102), (108), (120), and (138) (η ≥ 1) or (163)

(η < 1) such that X5
I %I X

4
I and X5

I 6= X∗I .

� I strictly prefers X∗I to all other spending schedules satisfying (102), (108),
(120), and (138) (η ≥ 1) or (163) (η < 1). So X∗I �I X5

I %I X
0
I .

This completes the result.



PUBLIC GOODS UNDER TIME PREFERENCE HETEROGENEITY 65

B.5 Proof of Theorem 1

Given a strategy profile σ, let t∗ , min({t : BI(χ(σ)|t) = 0}). Pick G : t∗ ∈ G∞. In
a defection equilibrium σD (if one exists), t∗ < ∞, and P spends nothing until t∗.
It is then clear that, starting at t∗, P will allocate his resources patient-optimally,
regardless of what I has done up to t∗. So

σDP (X|t) =

{
0 BI(X|t) > 0;

BP (X|t)αP BI(X|t) = 0.
(177)

Given this σDP , a strategy σI is a best response iff, at every node X|s at which
BI(X|s) > 0, we obtain the t∗ > s and {XI,t}t∈[s,t∗) that maximize∫ t∗

s

e−δI(t−s)u(XI,t)dt+

∫ ∞
t∗

e−δI(t−s)u(XP,t)dt, (178)

subject to ∫ t∗

s

e−r(t−s)XI,tdt ≤ BI(X|s), (179)

given that

XP,t =

{
0 t ∈ [s, t∗);

BP (X|s)e
r(t∗−s)αP e

(r−αP )(t−t∗), t ≥ t∗.
(180)

Note that, because t∗ ∈ G∞, we must have XI,t∗ = 0.
As in the proof of Proposition 1 (Appendix B.1), observe that I does best to

spend such that the marginal value of spending at any time s is equal to that of
investing to spend at any subsequent time t during which she spends, and that this
will happen precisely when

XI,t = Le
r−δI
η

t, (181)

for some constant L, across the times t ∈ [s, t∗) during which she will spend. Sub-
jecting this schedule to the budget constraint, given some t∗, we have∫ t∗

s

Le−r(t−s)e(r−αI)tdt = BI(X|s) (182)

=⇒ L = BI(X|s)αIe
(r−αI)s

(
1− e−αI(t∗−s)

)−1
=⇒ XI,t = BI(X|s)αI

(
1− e−αI(t∗−s)

)−1
e(r−αI)(t−s), t ∈ [s, t∗).
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From (178), (182), and (180), the utility I attains from spending her budget
optimally by t∗ is therefore[∫ t∗

s

e−δI(t−s)
((
BI(X|s)αI

(
1− e−αI(t∗−s)

)−1
e(r−αI)(t−s)

)1−η
− 1
)
dt

+

∫ ∞
t∗

e−δI(t−s)
((
BP (X|s)e

r(t∗−s)αP e
(r−αP )(t−t∗)

)1−η
− 1
)
dt

]
· 1

1− η
, η 6= 1;

(183)

∫ t∗

s

e−δI(t−s) ln
(
BI(X|s)δI

(
1− e−δI(t∗−s)

)−1
e(r−δI)(t−s)

)
dt

+

∫ ∞
t∗

e−δI(t−s) ln
(
BP (X|s)e

r(t∗−s)δP e
(r−δP )(t−t∗)

)
dt, η = 1.

(184)

Simplifying and integrating these terms gives

BI(X|s)
1−η

1− η
α−ηI

(
1− e−αI(t∗−s)

)η
(185)

+
BP (X|s)

1−η

1− η
α1−η
P

1

αP + δI − δP
e−αIη(t

∗−s) − 1

δI(1− η)
, η 6= 1;

e−δI(t
∗−s)

δI

(
ln(BP (X|s)δP )− δP

δI
+ δI(t

∗ − s) + 1
)

(186)

+
e−δI(t

∗−s) − 1

δI
ln
(1− e−δI(t∗−s)

BI(X|s)δI

)
− 1

δI
+

r

δ2I
, η = 1.

By these terms’ first order conditions with respect to t∗, we find a unique maxi-
mum at

t∗ = ln(Z(BI(X|s), BP (X|s)))/αI + s, (187)

where

Z(BI(X|s), BP (X|s)) , 1 +
BI(X|s)αI
BP (X|s)αP

γ. (188)

By construction, σDI is I’s unique best response to σDP . We will now show that σDP is
P ’s unique best response to σDI .
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Given σDI , suppose P spends XP,s ≥ 0 at some grid point s < t∗, and follows
strategy σDP elsewhere. The utility P attains across t ≥ s is

(XI,s +XP,s)
1−η − 1

1− η
dt

+

[∫ t∗

s+dt

e−δP (t−s)
((

(BI(X|s)−XI,sdt)e
r dtαI

(
1− e−αI(t∗−(s+dt))

)−1
e(r−αI)(t−(s+dt))

)1−η
− 1
)
dt

+

∫ ∞
t∗

e−δP (t−s)
((

(BP (X|s)−XP,sdt)e
r dter(t

∗−(s+dt))αP e
r−δP
η

(t−t∗)
)1−η

− 1
)
dt

]
· 1

1− η
, η 6= 1;

(189)

ln(XI,s +XP,s)dt

+

∫ t∗

s+dt

e−δP (t−s) ln
(

(BI(X|s)−XI,sdt)e
r dtδI

(
1− e−δI(t∗−(s+dt))

)−1
e(r−δI)(t−(s+dt))

)
dt

+

∫ ∞
t∗

e−δP (t−s) ln
(

(BP (X|s)−XP,sdt)e
r dter(t

∗−(s+dt))δP e
(r−δP )(t−t∗)

)
dt, η = 1.

(190)

As our expression for XI,s, we will use (182), with t = s and

t∗ = ln(z)/αI + s, (191)

z = Z(BI(X|s), BP (X|s)). (192)

In the integrals, we will use

t∗ = ln(z̃)/αI + s+ dt, (193)

z̃ = Z((BI(X|s)−XI,sdt)e
r dt, (BP (X|s)−XP,sdt)e

r dt). (194)

Then we will simplify and integrate, getting(
BI(X|s)αI

z
z−1 +XP,s

)1−η
1− η

dt

+
[(

1− z̃
δI−δP
αI

−1
)(
BI(X|s)

(
1− αI

z

z − 1
dt
)
αI

z̃

z̃ − 1

)1−η 1

αI − δI + δP

+ z̃
−αP
αI

η
(
BP (X|s)−XP,sdt

)1−η
α−ηP

]e−αP ηdt
1− η

− 1

δP (1− η)
, η 6= 1;

(195)

ln
(
BI(X|s)δI

z

z − 1
+XP,s

)
dt

+
[(

1− z̃−
δP
δI

)(
ln
(
BI(X|s)

(
1− δI

z

z − 1
dt
)
δI

z̃

z̃ − 1

)
− δI
δP

)
+z̃
− δP
δI

(
ln
(

(BP (X|s)−XP,sdt)δP

)
+
r

δI
ln(z̃)− 1

)
+

r

δP
+ r dt

]e−δP dt
δP

, η = 1.

(196)
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Now we will differentiate with respect to XP,s (recalling that XP,s appears in z̃);
divide the resulting term by dt, to rescale the payoffs from deviating from infinitesi-
mal absolute payoffs to nonzero payoffs per unit time; and set dt to 0. We then have
the rescaled payoff to an instantaneous deviation:(BP (X|s)αP

γ

)−η( αP
γ(αI − δI + δP )

−
BI(X|s)

BP (X|s)(η − 1)

)
z
−αP η

αI
−1

(197)

+(BP (X|s)αP )−η
( BI(X|s)αPγη

(η − 1)(BI(X|s)αIγ +BPαP )
− 1
)
z
−αP η

αI

−
BP (X|s)

−η

αI − δI + δP

(αP
γ

)1−η
z−η +

(
αIBI(X|s) +

BP (X|s)αP
γ

+XP,s

)−η
, η 6= 1;

γ
BI(X|s)

BP (X|s)2δP

(
2− δI

δP
− δP
δI

)
z
− δP
δI
−1

(198)

− 1

BP (X|s)δP z
+

1

BP (X|s)δP z/γ +XP,s

, η = 1.

As we can see, the total payoff impact can be split into the additional flow
utility from spending at s—the last term in both expressions above—and the utility
impact from adjusting I’s spending schedule, and thus t∗ and ultimately P ’s spending
schedule, after s. The former is decreasing in XP,s, and the latter is independent of
XP,s. To verify that P never wants to deviate with any positive spending rate at s,
therefore, we only have to verify that the expressions above are always negative at
XP,s = 0. In the η 6= 1 case, this is equivalent to the condition that

1
γ
αI−αP−δI+δP
αI−δI+δP

(
1 +

BI(X|s)

BP (X|s)
αI
αP
γ η+1
η−1

αI−δI+δP
αI−αP−δI+δP

)
z
η−1−αP

αI
η ≥ 1− αP

αI−δI+δP
1
γ
. (199)

In the η = 1 case, this is equivalent to the condition that

BI(X|s)

BP (X|s)

( δI
δP

+
δP
δI
− 2
)
z
− δP
δI ≥ 1− 1

γ
. (200)

If η < 1,
αI − αP − δI + δP
αI − δI + δP

> 0

and
η + 1

η − 1

αI − δI + δP
αI − αP − δI + δP

> 1.

Recall our formula for z from (192) and (188), and observe that z, and thus z to any
power, is positive. It follows that the left hand side of (199) is greater than

1

γ

αI − αP − δI + δP
αI − δI + δP

z
η−αP

αI
η
. (201)
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Observe that z > 1 and that, when η < 1, η − αP
αI
η > 0. Since γ < 1, from here it is

easy to verify that condition (199) holds.
If η > 1, twice differentiate the left hand side of (199) with respect to BI

BP
, recalling

that this term appears in z but nowhere else in the expression. (I am supressing the
“X|s” argument here for clarity.) We find that the expression has a unique global
minimum at

BI

BP

=
αP

αP − αI
1

γ

(1

η
+
η − 1

η + 1
(1− αI + δI − δP )

)
. (202)

If (202) is nonpositive, then as long as (199) holds at BI
BP

= 0, it will hold at all
BI
BP

> 0. So we must simply evaluate (199) after substituting 0 for BI
BP

. If (202) is

positive, we must evaluate (199) after substituting (202) for BI
BP

. In both cases, we
find that the inequality holds.

If η = 1, it follows from δI > δP that the left-hand side of (200) is positive and
that the right-hand side is negative. Thus the inequality holds.

If η < 1, this game is continuous at infinity, since the range of payoffs is bounded
and both parties employ positive discount rates. By the one-shot deviation principle
in continuous time, therefore, σDP is a best response to σDI .

If η ≥ 1, given a node X|s, consider a deviation by P from σDP to an alternative
strategy σ̃P—subject, as usual, to the technical restriction that

χ̃ , χ(X|s, (σ
D
I , σ̃P )) (203)

is defined, given G, for all t ≥ s.
First, observe that σDP maximizes P ’s forward-looking optimization problem at

all nodes X|t : BI(X|t) = 0. Deviation to σ̃P therefore can only offer an improvement
at a node X|s : BI(X|s) > 0.

If

∃t∗ : BI(χ̃|t∗) = 0, (204)

σ̃P offers P lower utility than σDP . This can be seen by backward induction. First,
because of the optimality of σDP following t∗, a permanent deviation to σ̃P cannot
offer P higher utility than a deviation to σ̃P until t∗ followed by a reversion to σDP .
Then let

t , max
t∈G∞∩[s,t∗)

: χP,t > 0. (205)

By the undesirability of one-period deviations, P prefers (a) deviating to σ̃P until
t−dt and subsequently following σDP to (b) following σ̃P until t∗. This reasoning may
be applied repeatedly until P does no spending before t∗. Deviation to a strategy
σ̃P whose corresponding χ̃ satisfies (204) is thus undesirable for P .
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Consider a strategy σ̃P not satisfying (204). For any grid point q > s, by the
reasoning above, P ’s payoff to following σ̃P until q, and σDP subsequently, is less than
UP (χ(σD)). So, denoting the continuation payoff to following strategy σP at grid
point q (after following σ̃P until q) by

C(σP , q) ,
∫ ∞
q

e−δP (t−q)u(χ̃|q, (σ
D
I , σP ))t)dt,

we have

C(σDP , s)−
(
C(σ̃P , s) + e−δP q(C(σDP , q)− C(σ̃P , q))

)
> 0 ∀q > s (206)

=⇒ C(σ̃P , q)− C(σDP , q) > eδP q(C(σ̃P , s)− C(σDP , s)) ∀q > s. (207)

If σ̃P is a profitable deviation for P at X|s, the right-hand side is positive, so the
difference in continuation payoffs as a function of q must be “fast-growing”, which
we will define to mean bounded below by c0e

δP q for some constant c0 > 0. C(σ̃P , q)
can never exced the continuation payoff for P if both parties invest all funds until
q and subsequently disburse them patient-optimally, which plateaus if η > 1 and
grows linearly at rate r if η = 1. (See the payoff expression from Proposition 1,
substituting B(X|s)e

r(q−s) for B.) For the difference in continuation payoffs to be
fast-growing, therefore, C(σDP , q) must be negative and fast-growing.

The patient payoff to the defection schedule given collective budget B (see Propo-
sition 9) can be rewritten

B1−η

1−η α−ηP
αIαP η

(
bP+(1−bP )

αI
αP

γ
)1−η

+(δI−δP )2(1−η)b
αI+δP−δI

αI
P

(
bP+(1−bP )

αI
αP

γ
)−αPαI η

αIαP η+(δI−δP )2(1−η)
− 1

δP (1−η)
, η > 1; (208)

1
δP

[
(δI−δP )2
δIδP

(
1 + (1−bP )δI

bP δP
γ
)− δP

δI + ln(B) + ln
(
bP δP + (1− bP )δIγ

)
+ δI−δP

δI
+ r−δI

δP

]
, η = 1.

If η > 1, the coefficient on B1−η is negative and is bounded below across bP ∈
[0, 1]. For C(σDP , q) to be fast-growing, therefore, B(χ̃|q)

1−η must be fast-growing.

B(χ̃|q) must thus be bounded above by c1e
δP
1−η q for some c1 > 0. Because the spending

rate cannot sustainably shrink more slowly than the collective budget, the discounted
continuation payoff to following σ̃P from any q must likewise be bounded above, for
some c2 > 0, by ∫ ∞

q

e−δP (t−s)
(c2e

δP
1−η t)1−η − 1

1− η
dt = −∞. (209)

If η = 1, the terms added to ln(B) are likewise bounded across bP . For C(σDP , q)
to be fast-growing, therefore, ln(B(χ̃|q)) must be (again, negative and) fast-growing,
so B(χ̃|q) must be bounded above by a function f(q) that falls superexponentially to
zero in q quickly enough that ln(f(q)) is (negative and) fast-growing. Again, because
the spending rate cannot sustainably shrink more slowly than the collective budget,
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the discounted continuation payoff to following σ̃P from any q must be bounded
above, for some c1, c2 > 0, by∫ ∞

q

e−δP (t−s) ln
(
c1f(t)c2

)
dt = −∞. (210)

This contradicts the assumption that σ̃P is a profitable deviation at X|s from
σDP , whose payoff is well-defined and finite (as confirmed in Proposition 9).

We have now shown that σD is an equilibrium. Furthermore, the definition of defec-
tion equilibrium determines P ’s strategy, and we have found I’s unique best response
to this strategy, so σD must be the unique defection equilibrium.

Finally, substituting (187) into (182) at s = 0 gives XI,t, and substituting (187)
into (180) at s = 0 gives XP,t.
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B.6 Proof of Proposition 7

First, let us show that the frontier of efficient payoffs is concave.
Let U0 = (U0

I , U
0
P ) and U1 = (U1

I , U
1
P ) be two efficient payoff profiles, and let X0

and X1 be spending schedules which attain these payoff profiles.
The mixture spending schedule Xα, defined by Xα(t) = αX1(t) + (1− α)X0(t),

is feasible: ∫ ∞
0

e−rt(αX1(t) + (1− α)X0(t))dt (211)

= α

∫ ∞
0

e−rtX1(t)dt+ (1− α)

∫ ∞
0

e−rtX0(t)dt

= αB + (1− α)B = B.

Furthermore, the discounted flow utility that Xα offers each player i at each time
t is e−δitu(αX1(t) + (1−α)X0(t)). By the concavity of u, this is greater than the α-
mixture of the discounted flow utilities offered by X0 and X1, i.e. e−δit(αu(X1(t)) +
(1− α)u(X0(t))).

Thus Xα offers a payoff profile that is Pareto-superior to αU1 + (1 − α)U0. It
follows that the frontier of efficient payoffs cannot exhibit any convexities.

Because the frontier of efficient payoffs is concave, an efficient spending schedule X
must maximize

Ua(X) , aUI(X) + (1− a)UP (X) (212)

for some weight a ∈ [0, 1]. Given efficient spending schedule X, the corresponding Ua
cannot be increased by moving resources between time 0 and any other time t ∈ G∞.
That is,

U ′a(X0) = ertU ′a(Xt) (213)

=⇒ X−η0 = ert(ae−δI t + (1− a)e−δP t)X−ηt

for all grid points t, and thus for all t. That is, X is optimal according to time
preference factor

βa(t) = ae−δI t + (1− a)e−δP t, (214)

or time preference rate

δa(t) = −β
′(t)

β(t)
=
aδIe

−δI t + (1− a)δP e
−δP t

ae−δI t + (1− a)e−δP t
. (215)

As we can see, δa(0) = aδI + (1 − a)δP . Therefore a is not only the weight placed
on I’s utility, but also the weight placed on her time preference in determining the
starting time preference rate.
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Let wa(t) denote the weight placed on I’s time preference rate at time t, such
that

δ(t) = wa(t)δI + (1− wa(t))δP . (216)

(As we can see, wa(0) = a.) Substituting (215) into (216) and rearranging, we have

wa(t) =
a

a+ (1− a)e(δI−δP )t
. (217)

Having fixed weight a to place on I’s forward-looking utility, the resulting spending
schedule is not time-consistent, because the resulting time preference rate is not
constant. Upon reaching each grid-time s > 0, aUI(X) + (1 − a)UP (X) can be
maximized across times t ≥ s by following time preference rate schedule δ(t − s)
rather than δ(t) as prescribed.

However, if upon reaching s we instead place weight

ã = wa(s) (218)

on I’s forward-looking utility, the resulting time preference rate schedule is the same
for t > s as that prescribed at time 0 using weight a. That is,

δã(t− s) = δa(t) ∀t ≥ s. (219)

We can see this by substituting (218) into (217) and the result into (214), simplifying,
and differentiating:

βã(t− s) =
a · e−δI(t−s)

a+ (1− a)e(δI−δP )s
+

(1− a)e(δI−δP )s · e−δP (t−s)

a+ (1− a)e(δI−δP )s
(220)

=
eδIs

a+ (1− a)e(δI−δP )s
(ae−δI t + (1− a)e−δP t)

=⇒ δã(t− s) = −β
′(t− s)
β(t− s)

=
aδIe

−δI t + (1− a)δP e
−δP t

ae−δI t + (1− a)e−δP t
= δa(t).

Let X(a) be the efficient spending schedule implied by weight a, and let x(a) be
its normalization: xt(a) , Xt(a)/Bt. Given bI ∈ (0, 1), X is a Pareto improvement
to the defection schedule XD iff x(a) is a Pareto improvement to the normalized
defection schedule xD(bI):

Ui(X(a)) ≥ Ui(X
D) (221)

⇐⇒ B1−ηUi(x(a)) +
B1−η − 1

δI(1− η)
≥ B1−ηUi(x

D) +
B1−η − 1

δI(1− η)
η 6= 1;

Ui(x(a)) + ln(B) ≥ Ui(x
D) + ln(B) η = 1,

⇐⇒ Ui(x(a)) ≥ Ui(x
D),
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with the same of course holding for strict inequalities.
Given any efficient normalized schedule x(a), for some weight a ∈ (0, 1), there

is some range of values [bI , b̄I ] ⊂ (0, 1) such that x(a) is a Pareto improvement
on xD(bI) iff bI ∈ [bI , b̄I ]. This follows directly from the inefficiency of xD(bI) for
bI ∈ (0, 1) and the facts that

� UI(x
D(0)) = UI(x(0)),

� UP (xD(0)) = UP (x(0)),

� UI(x
D(1)) = UP (x(1)),

� UP (xD(1)) = UP (x(1)),

� UI(x
D(bI)) is continuous and monotonically increasing in bI , and

� UP (xD(bI)) is continuous and monotonically decreasing in bI .

We can thus define

bI(a) , arg min
bI

: UP (x(a)) ≥ UP (xD(bI)), (222)

bI(a) , arg max
bI

: UI(x(a)) ≥ UI(x
D(bI)).

By construction, [bI(a), bI(a)] is the range of budget proportions bI initially belonging
to I such that x(a) is a Pareto improvement on xD. As shown above, it is also the
bI-range such that X(a) is a Pareto improvement on XD. So both parties to weakly
prefer cooperation to defection at t = 0 iff bI ∈ [bI(a), bI(a)].

More generally, given a strategy profile σ, both parties weakly prefer the forward-
looking spending schedule X[t,∞)(a) to defection at all grid points t iff

bI(x|t(σ)) ∈ [bI(wa(t)), bI(wa(t))] ∀t ∈ G∞. (223)

Given bI , consider a strategy profile σ∗ that implements a Pareto improvement
X(a) to BxD(bI), and suppose that

σ∗i (X|t) = σDi (X|t) ∀X|t 6= X|t(σ
∗) ∀i. (224)

That is, if either party defects from σ∗, they both subsequently follow the defection
equilibrium. Since bI ∈ [bI(a), bI(a)], relation (223) holds for t = 0. If σ∗ maintains
condition (223) at all grid points t, then σ∗ is an equilibrium.

Since bI(x|t(σ)), bI(x|t(σ)), and bI(x|t(σ)) are all continuous in t for any utility
weight a and any strategy profile σ, we only need to show that σ∗ can be constructed
such that bI(x|t(σ)) never crosses bI(x|t(σ)) or bI(x|t(σ)). We will now show this, by
contradiction.
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Consider a time t such that bI(x|t(σ
∗)) ≤ bI(x|t(σ

∗)) but bI(x|t+dt(σ
∗)) >

bI(x|t+dt(σ
∗)). That is, suppose that, by following σ∗, a node x|t comes when, upon

continuing to follow σ∗, I will prefer defecting to further continuing to follow σ∗.
Now, specify that σ∗I (x|t(σ

∗)) = Xt(a). That is, define σ∗ such that, at t, I con-
tributes the entirety of the spending. Then, at t + dt, I strictly prefers to maintain
σ∗ than to defect. To see this, observe that if the forward-looking defection payoff
for I at t + dt were higher than the forward-looking payoff from σ∗ at t + dt, then,
at t, the payoff to spending at rate Xt(σ

∗) at t followed by defection at t+ dt would
exceed the payoff from σ∗. But, by construction, the defection payoff for I at t is
the best I can get at t given that P will not spend until bI = 0, which holds in
either case. It would then follow that, at t, I prefers defection to following σ∗, in
contradiction to our assumption.

Likewise, consider a time t such that bI(x|t(σ
∗)) ≥ bI(x|t(σ

∗)) but bI(x|t+dt(σ
∗)) <

bI(x|t+dt(σ
∗)). That is, suppose that, by following σ∗, a node x|t comes when, upon

continuing to follow σ∗, P will prefer defecting to further continuing to follow σ∗.
Now, specify that σ∗P (x|t(σ

∗)) = Xt(a). That is, define σ∗ such that, at t, P con-
tributes the entirety of the spending. Then bI(x|t+dt(σ

∗)) > bI(x|t(σ
∗)). Meanwhile,

because wa(t) falls with time (see (217)), UP (wa(t)) rises with time; a normalized
unit of resources is allocated efficiently in a way that places ever less weight on I’s
forward-looking utility and ever more weight on P ’s. And UP (xD(bI)) decreases in
bI (as is intuitive, and can be seen formally by differentiating the expression from
Proposition 9 with respect to bI at B = 1). It thus follows from the definition of
bI(a) (see (222)) that bI(wa(t)) falls over time. With bI(x|t+dt(σ

∗)) > bI(x|t(σ
∗)) and

bI(wa(t+ dt)) < bI(wa(t)), it follows that condition (223) is maintained at t+ dt.
In short, if bI gets close to the upper end of the range, σ∗ can require I to

contribute a larger share of flow spending, and if bI gets close to the lower end, σ∗

can require P to contribute a larger share. Having constructed σ∗ such that there
is no time t at which bI(x|t(σ)) crosses the necessary thresholds, (223) is always
maintained, and σ∗ is an equilibrium.
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B.7 Proof of Proposition 8

From Proposition 4, we know that, given a warm-glow impatient funder, altruistic
P is able to implement patient-optimal spending of the collective budget as long
as bP ≥ (αI − αP )/αI . If this inequality is met, therefore, the payoff to spending
patiently is simply the payoff expression from Proposition 1, with δP as δ.

If this inequality is not met, integrate δP -discounted utility given the spending
rates from Proposition 4. That is, calculate∫ t∗

0

e−δP tu
(
BIαIe

(r−αI)t
)
dt (225)

+

∫ ∞
t∗

e−δP tu
(
(BIe

(r−αI)t∗ +BP e
rt∗)αP e

(r−αP )(t−t∗)
)
dt,

where t∗ = ln
(
BI
BP

αI−αP
αP

)/
αI > 0.

Given a warm-glow patient funder, the discounted marginal flow utility of allocations
to t ≥ 0 for altruistic I, if only P spends at t, is

e(r−δI)tu′(XP (t)) = (BPαP )−ηe(δP−δI)t) ≤ (BPαP )−η, (226)

where this upper bound obtains at t = 0. Since discounted marginal flow utility at t
is decreasing in spending at t, no allocation of BI across times can achieve I a higher
payoff than her payoff from warm-glow P ’s patient-optimal expenditure of BP , plus
BI times the upper bound above:

UδI (BP , δP ) +BI(BPαP )−η. (227)

It follows from (13) that t∗ → 0 as bI → 0, i.e. as bP → 1. Furthermore, the
discounted marginal flow utility for I to allocation at times t ∈ [0, t∗) after allocating
BI will, by I’s Euler equation, equal the marginal flow utility to allocation at t = 0.
By (87), this will equal (

BPαP e
(αI−αP )t∗

)−η
. (228)

The added payoff for I to I’s spending BI is thus bounded below by BI times (228).
As t∗ → 0, therefore, the lower bound on I’s total payoff converges to the upper
bound given by (227).
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B.8 Proof of Theorem 2

B.8.1 P ’s WTP given a warm-glow impatient funder

Substitute (1 − w)BP for BP in the payoff expression from Proposition 8 where
bP < (αI − αP )/αI :

B1−η
I

1−η α
1−η
I

[(
1

δI−δP−αI
+ 1

αP

)(
BI

(1−w)BP
αI−αP
αP

) δI−δP−αI
αI − 1

δI−δP−αI

]
− 1

δP (1−η)
, η 6= 1; (229)

1
δP

[
ln(BIδI) + r−δI

δP
+
(

BI
(1−w)BP

)− δP
δI

(
δI−δP
δP

) δI−δP
δI

]
, η = 1.

This is P ’s payoff to spending patiently and strategically, given a warm-glow impa-
tient funder, after paying fraction w of his budget, when bP is small. P ’s payoff when
the collective budget is spent according to the compromise time preference rate is
given by Proposition 2, with with δP as δ and bP δP + bIδI as δ̃:

B1−η

1−η

(
rη−r+bP δP+bIδI

η

)1−η((
r − bP δP − bIδI

)
η−1
η

+ δP

)−1
− 1

δP (1−η)
, η 6= 1; (230)

1
δ2P

(
δP ln(BP δP +BIδI) + r − bP δP − bIδI

)
, η = 1.

Setting (229) equal to (230) and solving for w gives

1− 1−bP
bP

((
1

1−bP
ηαI−bP (δI−δP )

ηαI

)1−η
αI+δP−δI

αI+δP−δI+bP (δI−δP )
η−1
η

−1

1−η

) αI
αI+δP−δI (

αI−αP
αP

) δP−δI
αI+δP−δI , η 6= 1; (231)

1− 1−bP
bP

(
ln
(
δI−bP (δI−δP )

δI−bP δI

)
+ bP

δI−δP
δP

) δI
δP

(
δI−δP
δP

) δP−δI
δP , η = 1.

This is P ’s willingness to pay for patient behavior given a warm-glow impatient
funder when bP is sufficiently small.

For both η 6= 1 and η = 1, we can see that the WTP tends to 1 as bP → 0 by
taking the limit of (231), applying L’Hôpital’s Rule.

B.8.2 P ’s WTP given an altruistic impatient funder

Differentiating the defection payoff expression from Proposition 9 with respect to
BP , we have

B1−η
αIαP η

(
BP+

BIαI
αP

γ

)−η
+B

δP−δI
αI

P (δI−δP )2
(
BP+

BIαI
αP

γ

)−αPαI η−1[
δP−δI+αI

αI

(
BP+

BIαI
αP

γ

)
−αP
αI

ηBP

]
αIαP η+(δI−δP )2(1−η)

, η 6= 1; (232)

(
BP δP +BIδIγ

)−1
+B

δP−δI
δI

P (δI − δP )2
(
BP + BIδI

δP
γ
)− δP

δI
−1

BI
δIδ

2
P
γ, η = 1. (233)

Let this term, with BbP substituted for BP , be denoted by π(bP ).
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Differentiating (230)—the patient payoff when the collective budget is allocated
according to the compromise time preference rate—with respect to BP , and evalu-
ating it at BP = 0, we have

(BIαI)
−η αP

αI + δP − δI
+

1

BI

αI − αP
(αI + δP − δI)2

α1−η
I ∀η > 0. (234)

Begin from the defection equilibrium given budgets (BI , BP ). Because P ’s payoff
is continuous in BP , his loss from paying fraction w of his budget converges, as
BP → 0 (and thus, holding BI fixed, as bP → 0), to

BPwπ(bP ). (235)

His net payoff loss from joining I in allocating the collective budget according to the
compromise time preference rate converges, as BP → 0 (and thus, holding BI fixed,
as bP → 0), to

BPπ(bP )−BP

[
(BIαI)

−η αP
αI + δP − δI

+
1

BI

αI − αP
(αI + δP − δI)2

α1−η
I

]
. (236)

Setting (235) equal to (236) and solving for w as a function of bP , we have

lim
bP→0

w(bP ) = lim
bP→0

[
1−

(BIαI)
−η αP

αI+δP−δI
+ 1

BI

αI−αP
(αI+δP−δI)2

α1−η
I

π(bP )

]
. (237)

If η 6= 1, observe that as bP → 0 (and thus BP → 0), the first term in the

numerator of (232) approaches a constant; the factor multiplying B
δP−δI
αI

P in the
second term in the numerator approaches a constant; and the denominator and B1−η

coefficient are unchanged. Because (δP − δI)/αI < 0, therefore, | limbP→0 π(bP )| =∞
if η 6= 1.

Likewise, if η = 1, observe that as bP → 0 (and thus BP → 0), the first term of

(233) approaches a constant, and the factor multiplying B
δP−δI
δI

P in the second term
approaches a constant. Because (δP − δI)/δI < 0, therefore, | limbP→0 π(bP )| =∞ if
η = 1.

Thus, from (237), limbP→0w(bP ) = 1, regardless of η.
Finally, since P ’s payoff to patient behavior, given budgets (BI , BP (1−w)), must

be weakly higher in a Pareto-superior equilibrium than in the defection equilibrium,
his willingness to pay for patient behavior must be weakly higher in a Pareto-superior
equilibrium than in the defection equilibrium as well. Since the latter converges to
1 as bP → 0, the former must also.
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B.9 Proof of Theorem 3

B.9.1 I ’s WTP given a warm-glow patient funder

One upper bound on I’s WTP in this case can be found by substituting (1− w)BI

for BI in (29), setting this term equal to UδI (B, δP ), and solving for w:

(BPαP )1−η

1− η
1

αP + δI − δP
− 1

δI(1− η)
+ (1− w)BI(BPαP )−η

≥ (BαP )1−η

1− η
1

αP + δI − δP
− 1

δI(1− η)

=⇒ w ≤ 1− bηP − bP
1− bP

αP
(1− η)(αP + δI − δP )

, η 6= 1; (238)

δI ln(BP δP ) + r − δP
δ2I

+
(1− w)BI

BP δP

≥ δI ln(BδP ) + r − δP
δ2I

=⇒ w ≤ 1− bP
1− bP

ln
( 1

bP

)δP
δI
, η = 1. (239)

This is bounded below 1 across bP > 0. (By L’Hôpital’s Rule, the WTP bound
approaches δI−δP

αP+δI−δP
as bP → 1, for all η. In this limit the bound is exact, by

Proposition 8.)
This bound on I’s WTP approaches 1 as bP → 0. A second upper bound on I’s

WTP, however, can be found by setting her payoff to spending the collective budget
impatient-optimally, after paying wBI—i.e. UδI (B − wBI , δI)—equal to UδI (B, δP )
and solving for w:

(B − wBI)
1−η

1− η
α−ηI −

1

δI(1− η)
≥ (BαP )1−η

1− η
1

αP + δI − δP
+

1

δI(1− η)

=⇒ w ≤ 1

1− bP

(
1− αP

αIγ

)
, η 6= 1; (240)

δI ln((B − wBI)δI) + r − δI
δ2I

≥ δI ln(BδP ) + r − δP
δ2I

=⇒ w ≤ 1

1− bP

(
1− δP

δIγ

)
, η = 1. (241)
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This bound approaches a value strictly below 1 as bP → 0. (The bound is also exact
in this limit, by Proposition 3.)

Thus I’s WTP is uniformly bounded below 1 across bP ∈ (0, 1).

B.9.2 I ’s WTP given an altruistic patient funder

Set I’s defection payoff from Proposition 9, with (1−w)BI substituted for BI , equal
to her payoff to collective spending under time preference rate δP , from Proposition
2. Solving for w yields (36).
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