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I present a model of cross-task learning by doing. Tasks are partitioned into
“workflows”, and performing a task increases one’s productivity at other tasks
in the same workflow. This can explain why labor is typically bundled into jobs
instead of transacted by the task. Compared to standard task-based models, cross-
task learning changes automation’s impact on output in three ways. First, mak-
ing the first few tasks in a workflow automatable increases output less, since it
remains efficient for workers to perform some automatable tasks to increase their
productivity at the non-automatable tasks. Second, making later tasks in a work-
flow automatable increases output by more than earlier tasks, as it becomes effi-
cient to automate all automatable tasks, as in a standard model. Third, advanced
automation increases output by even more, if machines are intelligent enough
also to “learn by doing” and can do more than any single human worker.
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1 Introduction

The task-based framework. In existing task-based models of production, output
exhibits constant returns to scale in the performance of a set of necessary tasks (see
in particular Zeira (1998) and Aghion et al. (2019)).1 Each can be performed by labor
and/or capital. As long as capital is plentiful enough, labor performs only those tasks
which capital cannot. Making more tasks automatable increases output by allowing
labor to shift to the remaining non-automatable tasks, which are in shorter supply.

Task-based models have proven especially influential in forecasting the impact on
output of advances in AI. Aghion et al. (2019) use their task-based model to argue that
AI may simply continue a long-running process in which constant growth is sustained
by a constant process of task-by-task automation. Acemoglu (2025) combines a similar
model with Eloundou et al..’s (2024) estimates of each O*NET task’s LLM exposure to
forecast the GDP impact of LLMs. Aghion and Bunel (2024), responding to a draft
of Acemoglu’s paper, contest practically all of Acemoglu’s assumptions except the
central one: that output is a function of task quantities, where each task’s quantity is
proportional to the capital or labor assigned to it.

Three puzzles for the task-based framework. Taking these models literally, it
is not clear why labor comes in the task-bundles we call “jobs”, as labor could just as
efficiently be transacted at the task level. A simple answer in the spirit of Coase’s (1937)
theory of the firm might be that each labor transaction comes with some fixed cost,
and that total transaction costs are therefore minimized when each worker sells all
her labor to a single firm. But this would not explain why, as e.g. the O*NET database
testifies, firms so often hire multiple individuals to perform the same suite of tasks,
when the firm is large enough that it could seemingly perform all the tasks in equal
quantities by assigning only one task to each employee.2

1Unlike e.g. Acemoglu and Restrepo (2018), we will focus here on the case in which the set of tasks
is fixed.

2Korinek and Suh (2024) use an Aghion et al.-style task-based framework to model how output may
rise, and wages fall, on the transition to a world of artificial general intelligence (AGI), which they take
to be equivalent to full automation. They argue that the model cannot straightforwardly be applied to
the O*NET task database, but only because each O*NET task is too large. On their view, log(output) is
a separable function of “atomistic tasks”, each of which is narrower than the O*NET task(s) of which it
is a part. This view only exacerbates the “bundling” puzzle.
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The CRS task-based framework also fails to capture the possibility of gains from
specialization. Relatedly, it fails to capture the fact that in many occupations, compen-
sation increases superlinearly in hours worked.3 Indeed, these puzzles in some sense
exacerbate the first. The simplest way to resolve them in a task-based model would
presumably be to introduce within-task learning by doing, so that a worker’s produc-
tivity at a given task increases in the quantity of the task he performs. But in this case
workers are more productive when they perform fewer tasks, so it is most efficient to
assign each worker as few tasks as possible.

Cross-task learning. A brief examination of realistic workflows suggests an ex-
planation for all three patterns. Consider the O*NET occupation of Economist. One
of its 14 associated tasks (#7538) is to “analyze... data to explain economic phenom-
ena...”. Another (#21106) is to “[e]xplain [the] economic impact of policies to the pub-
lic”. Though data analysis and public communication are in some sense very distinct
tasks, they cannot easily be assigned to different people: analyzing the data makes an
economist much better at credibly discussing its implications. Or consider the Com-
puter Systems Engineer: “[v]erify[ing the] stability, interoperability, portability, secu-
rity, or scalability of [a] system architecture” (#14669) is much easier when one is also
the architect (#14676, #14689).

In short, our productivity at Task B often increases in our performance of Task A.
One some margins, performing Task A may even increase our productivity at Task
B by more than performing more of Task B. If so, then working longer hours may
increase output per hour, yet specialization only yields gains up to a point: beyond it,
it is efficient for each worker to perform multiple tasks.

The two examples above illustrate cross-task learning within the context of a par-
ticular work project, but cross-task learning may also occur across projects, in a sense

3Ameriks et al. (2020) find that older Americans would generally prefer to reduce their working
hours gradually if it were possible to do so without reducing their hourly wage, instead of moving
discretely from full-time work to retirement, implying that the relative dearth of high-paying part-time
work is a feature of the production function and not of worker preferences. Recent work by Jarosch
et al. (2025) analogously finds that workers in Germany and the UK (though interestingly not the US)
would prefer fewer hours without sacrificing hourly pay. Intuitively, the very long hours often worked
in law, consulting, and medical residencies seem attributable in part to the difficulty of partitioning
large, time-sensitive projects across multiple employees rather than entirely to employee preferences
for long hours: see e.g. Prescott et al.’s (2009) model in which workers choose workweek length given
a potentially superlinear function from hours worked to labor services provided.
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more reminiscent of conventional learning by doing. For example, one’s productivity
in teaching may increase in both the number of hours one has spent teaching and the
number of hours one has spent doing research, including research on subjects other
than the one being taught. The model of this paper is intended to cover both cases.

Outline. I introduce a simple model of cross-task learning by doing that can account
for the three phenomena above. I then argue that it sheds light on how we should
expect the GDP impact of automation, especially from AI, to unfold.

The space of tasks is partitioned into “workflows”. In the simplest setting, intro-
duced in Section 2, performing a task makes one more productive at some or all tasks
in the same workflow, but no others. Furthermore, the learning drawn from each task
within a workflow exhibits diminishing returns. It is thus efficient for each worker
to perform (one or more) complete workflows rather than an arbitrary assortment of
tasks. Nevertheless, specialization increases returns by allowing each worker to focus
on fewer workflows.

I then consider the implications of the model for the GDP impact of advances in
task-based automation. I find that its predictions differ from those of a standard task-
based model in three ways.

1. Making the first few tasks in a workflow automatable increases output less than
in a standard model. This is because it remains efficient for workers to perform
some automatable tasks—i.e. to forego some automation—to increase their pro-
ductivity at the non-automatable tasks.

2. Making later tasks in a workflow automatable increase output more than earlier
tasks, as it becomes efficient to automate all automatable tasks, as in a standard
model.

3. Finally, arguably a key distinction between AI-based and earlier waves of au-
tomation is that intelligent machines can themselves learn as they work, either
continuously or because widespread deployment of one generation of AI and
robotics systems facilitates the data collection used to train the next generation.
On accounting for this, automation speeds growth by even more than in a stan-
dard model in the limit, given that the machines can domore (or learn frommore
instances of “doing”) than any single human worker.
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In short, I argue that the relationship between automation and growth should exhibit
a convexity not found in standard task-based models.

In Section 3, I extend the model by weakening the distinction between tasks that
are and are not in the same workflow. In particular, I allow the performance of
tasks in workflow A to improve a worker’s productivity in workflow B to an inter-
mediate degree, which decreases continuously with the “distance” between A and B.
This extension accommodates the intuition that, even though a worker may perform
multiple workflows—so that, as noted above, there is room for further gains from
specialization—it is efficient for each job to consist of a cluster of adjacent workflows
instead of an arbitrary assortment. The extended model preserves all three qualitative
results of the simple model for the GDP impact of automation. It also intensifies the
third result, allowing machines to increase their productivity at a workflow not only
as a result of performing its tasks at a large scale but also as a result of performing
tasks in other workflows.

Section 5 concludes with a discussion of how models without cross-task learn-
ing may be leading us astray about the impact of automation in practice, and how a
deeper understanding of how tasks and workflows compose into useful work might
be valuable.

2 Simple model

Model. The global set of tasks is partitioned into workflows. Each workflow consists
of a unit continuum of tasks. We will begin with the case in which there is only one
workflow, as this is most similar to the setup of a standard task-based model.

Tasks 𝑖 range from 0 to 1. For some threshold 𝐼 < 1, tasks 𝑖 ≤ 𝐼 are automatable,
in that they can be performed by capital or labor. Tasks 𝑖 > 𝐼 can only be performed
by labor. 𝐾𝑖 and 𝓁𝑖 are the (integrable) densities of capital and labor assigned to task 𝑖

respectively. For simplicity, we will say that output 𝑌 (equivalently, the output of the
workflow) is Leontief in the quantities of the tasks 𝑌𝑖, and that there is only worker.

The above is simply the Leontief case of a standard task-based model. To introduce
cross-task learning within the workflow, we will say that an individual’s productivity
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at task 𝑖, 𝐴𝑖, increases in her performance of tasks 𝑗 ≤ 𝑖. In particular, we will say that

𝐴𝑖 = (1 + 𝛼 inf

𝑗≤𝑖

𝓁𝑗 ), 𝛼 > 0, (1)

where 𝛼 = 0 would correspond to the case without learning.
Given capital stock 𝐾 , an allocation of capital and labor across tasks is efficient if

it maximizes

𝑌 ≡ inf

𝑖

𝑌𝑖 (2)

subject to

𝑌𝑖 =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝐾𝑖 + 𝐴𝑖𝓁𝑖, 𝑖 ≤ 𝐼 ;

𝐴𝑖𝓁𝑖, 𝑖 > 𝐼 ;

(3)

∫

1

0

𝐾𝑖 𝑑𝑖 ≤ 𝐾,
∫

1

0

𝓁𝑖 𝑑𝑖 ≤ 𝓁, (4)

where 𝓁 is the (exogenous) quantity of labor the worker supplies.
Finally, to simplify even further, wewill assume that as long as 𝐼 < 1, lack of capital

is not a constraint on the margin. Nevertheless, given learning, it may be efficient for
our worker to spend 𝑓 > 0 units of her labor on automatable tasks. The direct value of
performing these tasks is zero, as she simply displaces the capital that could otherwise
have performed them; the value is entirely the productivity gained on the remaining
tasks.

Proposition 1 (The optimal allocation).
Given tasks up to 𝐼 automatable, it is uniquely optimal (up to measure-zero deviations)
to set

𝓁𝑖 =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑓 (𝐼 )

𝐼
, 𝑖 ≤ 𝐼 ;

𝓁−𝑓 (𝐼 )

1−𝐼
, 𝑖 > 𝐼 ,

(5)

yielding

𝑌 =
(
1 + 𝛼

𝑓 (𝐼 )

𝐼
)

𝓁 − 𝑓 (𝐼 )

1 − 𝐼

, (6)
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where

𝑓 (𝐼 ) ≡

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝓁𝐼 , 𝐼 ≤
𝛼𝓁

1+2𝛼
;

𝛼𝓁−𝐼

2𝛼
,

𝛼𝓁

1+2𝛼
≤ 𝐼 ≤ 𝛼𝓁;

0, 𝐼 ≥ 𝛼𝓁.

(7)

Proof. Given that the worker spends 𝑓 ∈ [0, 𝓁] of her time on automatable tasks, it is
uniquely optimal (up to measure-zero deviations) to set

𝐿𝑖 =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑓

𝐼
, 𝑖 ≤ 𝐼 ;

𝓁−𝑓

1−𝐼
, 𝑖 > 𝐼 .

(8)

An unequal allocation of 𝑓 to automatable tasks features 𝓁𝑖 < 𝑓 /𝐼 for some 𝑖 ≤ 𝐼 , and
thus lower 𝐴𝑖 (1) for 𝑖 > 𝐼 than under allocation (8). An alternative allocation of ℎ − 𝑓

to non-automatable tasks must feature a positive-measure task set  ⊂ (𝐼 , 1] such that
𝓁𝑖 <

𝓁−𝑓

1−𝐼
for all 𝑖 ∈  and some 𝑖 ≤ inf  : so for all 𝑖 ∈  , 𝐴𝑖 is weakly lower and 𝓁𝑖

strictly lower than in allocation (8).
Likewise, 𝑓 > 𝓁𝐼 would require a positive-measure task set  ⊂ (𝐼 , 1] such that

𝐿𝑖 <
𝓁−𝑓

1−𝐼 (<
𝑓

𝐼 )
for all 𝑖 ∈  and some 𝑖 ≤ inf  , leaving both 𝐴𝑖 and 𝐿𝑖 strictly lower

than in allocation (8) with 𝑓 ≤ 𝓁𝐼 .
Since allocation (8) with 𝑓 ≤ 𝓁𝐼 yields output

(
1 + 𝛼

𝑓

𝐼
)

𝓁 − 𝑓

1 − 𝐼

,

it only remains to find the 𝑓 ∈ [0, 𝓁𝐼 ] that maximizes the above given 𝐼 .

Note that if 𝛼 > 1, 𝑓 (𝐼 ) > 0 for all 𝐼 .

How learning changes automation’s impact on output. In a standard task-based
model, the elasticity of output to increases in automatability—more precisely,

−

𝑑 ln(𝑌 )

𝑑 ln(1 − 𝐼)

—equals 1 (in the long run, or immediately given unlimited capital).
Here, from equation (7), we see that when 𝐼 is low, it is not efficient to use capital
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at all, because performing the automatable tasks gives the worker much more context
on the remainder of the workflow and performing them costs the worker only a small
fraction of her time. When 𝐼 > 𝛼𝓁, on the other hand, it is costly enough to perform
the automatable tasks in the workflowmanually (in non-negligible quantities) that it is
efficient to fully automate them. The elasticity of output to increases in automatability
thus equals 0 for low 𝐼 <

𝛼𝓁

1+2𝛼
and 1 only for 𝐼 > 𝛼𝓁. Substituting the middle row of

(7) into (6) and differentiating reveals that the elasticity rises monotonically from 0 to
1 across the intermediate range.4

Specialization andmultiple workflows. The model of this section offers a simple
explanation for why it may be efficient for each worker to perform a suite of tasks.

It also offers an explanation for why, at least while 𝐼 < 𝛼𝓁, wages might increase
in hours worked. If 𝐼 = 0, for example, a worker working 𝓁 hours per week (or with
𝓁 hours of cumulative experience, on the model’s “experience”-based interpretation)
spreads these hours equally across all taskswithin theworkflow, enjoying productivity
1 + 𝛼𝓁 at each task and thus producing

𝓁 + 𝛼𝓁
2

units of output.
With only one workflow, the model predicts that each worker will perform all

tasks, as long as 𝐼 < 𝛼𝓁. This is of course unrealistic, and fails to capture our third
desideratum: gains from specialization. Suppose instead therefore that there are 𝑊

symmetric workflows and 𝑁 individuals, with 𝑊 ≫ 𝑁 . Let 𝑌𝑤 denote the output
of workflow 𝑤, and again for simplicity, let output 𝑌 (𝑌1, ..., 𝑌𝑊 ) be symmetric and
Leontief in each 𝑌𝑤. Then, fixing each individual’s labor supply at 1, it is uniquely
efficient for each individual to perform 𝑊/𝑁 workflows, dedicating 𝑁/𝑊 units of
labor to each.

4One might intuit that the elasticity exceeds 1 for intermediate 𝐼 , since 𝑓 (𝐼 ) falls rapidly through
this range. This is incorrect: though the fraction of the workforce assigned to tasks (𝐼 , 1 − 𝐼] rises
rapidly, these gains are largely offset by the rapid decrease in learning.
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Absent automation, the output of each task, and aggregate output, then equals

𝑁

𝑊

+ 𝛼
(

𝑁

𝑊
)

2

,

so aggregate output per person equals

1

𝑊

+ 𝛼

𝑁

𝑊
2
.

This increases in 𝑁 because a larger population allows each worker to specialize in
fewer workflows.

Of course, if for all𝑤 tasks𝑤𝑖with 𝑖 ≤ 𝐼 are automatable, the optimal allocation of
individuals to workflows does not change. The optimal allocation of each individual’s
work within her workflows is still characterized by (5) and (7), and output still equals
(6), with 𝓁 = 𝑁/𝑊 .

3 A richer task space

Motivation. The model of the previous section offers a simple explanation for our
three “puzzles”, but it fails in two important ways. First, it predicts that it is efficient
for each worker to perform an arbitrary set of workflows, rather than a related set.
Second, it predicts that when 𝐼 > 𝛼, there is no longer any benefit at all to assigning
each worker a related cluster of tasks, as in a model without learning.

Both these limitations are artifacts of the simplifying assumption that tasks are
either entirely necessary for learning (if they are downstream in the same workflow)
or entirely irrelevant (if they are in different workflows). This section weakens that
assumption. Qualitatively, the central point is that:

• Insofar as we learn more by doing a given task (or related tasks) more than
by doing more distant tasks, it is efficient to specialize and reap the resulting
increasing returns.

• Insofar as there are diminishing returns to learning from a given task in isolation,
specialization can be counterproductive. This is true regardless of the state of
automation, but it means that feasible automation can be inefficient by requiring
us to specialize in inefficient ways.



9

This point can be illustrated simply in a two-dimensional task space.

Model. There is a unit interval of workflows𝑤, each ofwhich contains a unit interval
of tasks 𝑤𝑖. As in Section 2, output is Leontief in tasks (or equivalently, in the output
𝑌𝑤 of each workflow, which is Leontief in the output of each of its tasks). There are 𝑁
workers, indexed by 𝑛. 𝓁𝑛

𝑤𝑖
denotes the density of 𝑛’s performance of task 𝑤𝑖 and 𝐿

𝑛

𝑤

denotes the density of 𝑛’s performance of tasks in workflow𝑤. Worker 𝑛 exogenously
supplies one unit of labor:

∫

1

0

∫

1

0

𝓁
𝑛

𝑤𝑖
𝑑𝑖 𝑑𝑤 =

∫

1

0

𝐿
𝑛

𝑤
𝑑𝑤 = 1. (9)

Now, however, let the productivity of worker 𝑛 at task 𝑤𝑖 equal

𝐴
𝑛

𝑤𝑖
= 𝐴

𝑛

𝑤(1 + 𝛼 inf

𝑗≤𝑖

𝐴
𝑛

𝑤
𝓁
𝑛

𝑤𝑗), 𝛼 > 0; (10)

𝐴
𝑛

𝑤
= 𝑔

(∫

𝑤

0

𝑓 (𝑤 − 𝑣)𝐿
𝑛

𝑣
𝑑𝑣
)
, (11)

where 𝑓 (⋅) is positive and decreasing—so that more distant workflows 𝑣 ≪ 𝑤 con-
tribute less to productivity at 𝑤—and 𝑔(⋅) is increasing.

Specialization into intervals of workflows. 𝐴
𝑛

𝑤
faces no diminishing returns

in each 𝐿
𝑛

𝑣
(except insofar as 𝑔(⋅) may exhibit diminishing returns to learning collec-

tively), let alone the extreme case of Leontief returnsmaintainedwithin aworkflow. As
a result, since 𝑓 (⋅) is decreasing, efficiency requires partitioning the set of workflows
into𝑁 equal intervals, each performed exclusively by a single worker. Let 𝑛 ∈ {1, ..., 𝑁 }

denote the worker assigned workflows

𝑤 ∈
[

𝑛 − 1

𝑁

,

𝑛

𝑁
]
.

In the absence of automation, optimal 𝐿𝑛
𝑤
decreases in 𝑤 through this range, offset-

ting the fact that higher-indexed workflows benefit from more learning via the per-
formance of lower-indexed workflows.
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For illustration, suppose

𝑓 (𝑥) = 𝑥
−𝛽

, 𝑔(𝑥) = 𝑥

𝛽

1−2𝛽
, 𝛽 ∈

(
0,

1

2
)
. (12)

Then an allocation {𝐿
𝑛

𝑤
} from 𝑤 to 𝑤 equalizes 𝐴𝑛

𝑤
𝐿
𝑛

𝑤
, and thus 𝑌𝑤, across the range if

𝐿
𝑛

𝑤
= 𝑚(𝑤 − 𝑤)

−𝛽
, 𝑚 > 0 (13)

(letting 𝐴
𝑛

𝑤
𝐿
𝑛

𝑤
≡ lim

𝑤→𝑤
+ 𝐴

𝑛

𝑤
𝐿
𝑛

𝑤
). The missing coefficient 𝑚 in (13) follows from the

constraint

∫

𝑤

𝑤

𝐿
𝑛

𝑤
𝑑𝑤 = 1

⟹ 𝑚 = (1 − 𝛽)(𝑤 − 𝑤)
𝛽−1

. (14)

Substituting (12)–(14) into (11) yields

𝐴
𝑛

𝑤
=
(
𝑚
∫

𝑤

𝑤

((𝑤 − 𝑣)(𝑣 − 𝑤))

−𝛽

𝑑𝑣
)

𝛽

1−2𝛽

=
(
𝑚
(Γ(1 − 𝛽))

2

Γ(2 − 2𝛽)

(𝑤 − 𝑤)
1−2𝛽

)

𝛽

1−2𝛽

∝ (𝑤 − 𝑤)
𝛽
,

which confirms that 𝐴𝑛

𝑤
𝐿
𝑛

𝑤
is independent of 𝑤 across the range of workflows 𝑛 per-

forms.
When the population doubles, each worker performs half as many workflows, so

𝐴
𝑛

𝑤
increases for each workflow 𝑤 she still performs. In the example just above, the

elasticity of productivity to population is 𝛽(1−𝛽)

1−2𝛽
. To see this, by (12)–(14), halving

𝑤 − 𝑤 (fixing 𝑤) multiplies 𝐿𝑛
𝑤
by 2

1−𝛽 for each 𝑤 in the new range. This in turn

multiplies 𝐴𝑛

𝑤
by 2

𝛽(1−𝛽)

1−2𝛽 .
Within a workflow, its effective labor 𝐴𝑛

𝑤
𝐿
𝑛

𝑤
is allocated equally across tasks.

Automation. Suppose that, across all workflows, tasks 𝑤𝑖 with 𝑖 ≤ 𝐼 are automat-
able. Then it is easy to verify that the results of this section and the previous sec-
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tion are essentially unchanged. It is still optimal to assign each worker an interval of
workflows and to allocate 𝐿𝑛(= 1) so that 𝐴𝑛

𝑤
𝐿
𝑛

𝑤
is equalized across the interval. The

allocation of 𝐴𝑛

𝑤
𝐿
𝑛

𝑤
across workflow 𝑤 that equalizes 𝐴𝑛

𝑤𝑖
𝓁
𝑛

𝑤𝑖
across 𝑖 is given by 𝓁𝑛

𝑤𝑖
=

(5) (with 𝐿
𝑛

𝑤
in place of 𝓁) and

𝑓 (𝐼 ) =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝐿
𝑛

𝑤
𝐼 , 𝐼 ≤

𝛼𝐴
𝑛

𝑤
𝐿
𝑛

𝑤

1+2𝛼
;

𝛼𝐿
𝑛

𝑤
−𝐼

2𝛼
,

𝛼𝐴
𝑛

𝑤
𝐿
𝑛

𝑤

1+2𝛼
≤ 𝐼 ≤ 𝛼𝐴

𝑛

𝑤
𝐿
𝑛

𝑤
;

0, 𝐼 ≥ 𝛼𝐴
𝑛

𝑤
𝐿
𝑛

𝑤

(i.e. essentially (7) with 𝐴
𝑛

𝑤
𝐿
𝑛

𝑤
in place of 𝓁 when defining the thresholds). The impact

on output of increasing 𝐼 is precisely as described in Section 2.
If instead tasks 𝑤𝑖 with 𝑤 ≤ 𝑊 are automatable, for some 𝑊 ∈ (0, 1), these are

fully automated, since it is always more efficient to allocate a population across a
narrower range of workflows. A proportional decrease to 1 −𝑊 functions like a pro-
portional increase to population, as described above.

4 Machine learning by doing

We will now briefly explore the third and last implication of (within- and cross-task)
learning for automation: that once automation is sufficiently advanced, if machines
can learn by doing as humans can, growth will rise by more than in a standard task-
based model.

We have been assuming for simplicity that output is Leontief across tasks and that,
while 𝐼 < 1, output is bottlenecked by labor and not by the tasks capital can perform.
In our setting, before full automation, capital’s productivity at tasks 𝑤𝑖 with 𝑖 < 𝐼 is
irrelevant. In particular, it is irrelevant whether we model capital in the traditional,
learning-free way or as learning from the tasks it performs. “Machine learning by
doing”5 thus has interesting implications here only after full automation, so we will
consider its implications only in this case. It will hopefully be clear that similar impli-
cations can emergemore continuously in a model in which capital partially substitutes

5I.e. some process by which the data gathered while doing work—including human evaluations—
improves subsequent performance. This may include both continuous learning and simply the use of
data gathered on the job in training future AI models.
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for labor on the margin while work remains only partially automated.
In a standard task-based model, output after full automation is 𝐴𝐾 . Once the la-

bor bottleneck is fully relieved, output grows exponentially in the absence of further
technological development (given non-negligible saving), and new learning can speed
growth only by increasing the replication rate of capital. Here, suppose that capital’s
productivity at workflow𝑤 (𝐴𝑤) and at task𝑤𝑖 (𝐴𝑤𝑖) is given by (10)–(11), with 𝐾 and
𝑘𝑤𝑗 in place of 𝐿𝑛 and 𝓁

𝑛

𝑤𝑗
. Instead of the unit labor supply constraint faced by each

individual in (9), capital faces the constraint

∫

1

0

∫

1

0

𝑘𝑤𝑖𝑑𝑖 𝑑𝑤 =
∫

1

0

𝐾𝑤 𝑑𝑤 = 𝐾.

Then output exhibits increasing returns in capital. In particular, using the functional
forms above, and recalling that in this setting [𝑤,𝑤] = [0, 1], we have

𝐾𝑤 = (1 − 𝛽)𝑤
−𝛽

⟹ 𝐴𝑤 ∝ 𝐾

𝛽

1−2𝛽
𝑤
𝛽
.

The elasticity of productivity to capital is 𝛽

1−2𝛽
, even greater than the 𝛽(1−𝛽)

1−2𝛽
elas-

ticity of productivity to population absent automation. This is due to the assumption
that, unlike in the human case, every unit of capital can learn from the experience of
every other unit. Put another way, when capital performs all workflows, the optimal
allocation of a doubled capital stock doubles the density of capital on each workflow.
By contrast, a doubled population must divide itself across workflows more finely, so
that the mind performing each task benefits from a narrower range of learning.

5 Concluding remarks

Eloundou et al. (2024) evaluate the extent to which GPT-4, perhaps accompanied by
necessary “wrapper” software, can automate each task in the O*NET database. At
face value, the analysis implies that a lightly augmented GPT-4 could automate 38%
of the wage bill.6 Since GPT-4 does not seem on track to increase output by anything

6Following Acemoglu (2025), I am weighting each task by its occupation’s share of the 2019–2022
wage bill.
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close to 38%, recent attempts to quantify the GDP impact of LLMs (Acemoglu, 2025;
Aghion and Bunel, 2024) have produced more intuitively reasonable figures largely by
assuming, somewhat ad hoc,

• that tasks judged less than “75% automatable” (Eloundou et al. categories 0–2)
generate no labor savings at all and

• that for tasks judged at least “75% automatable” (Eloundou et al. categories 3 and
4), their labor savings in practice will permanently equal their judged automata-
bility multiplied by recent empirical estimates of time savings on a handful of
tasks in real-world settings.

0%

25%

50%

75%

100%

0.21 0.52 0.73 0.99
0 1 2 3 4
Share-weighted tasks by category

Automatability
(Eloundou et al.)
and labor savings

(Aghion and Bunel,
Acemoglu)

Figure 1: Distribution of “automatability” (Eloundou et al.) and “labor cost savings”
(Acemoglu, Aghion and Bunel) across share-weighted tasks

After these and other adjustments, the impact on GDP, even of systems that can truly
automate 38% of wage-adjusted tasks in isolation, is estimated to be a few percent at
most.

These adjustments perhaps produce reasonable estimates of the impacts of LLMs
on GDP today and in the very near future. However, because they permanently mul-
tiply task-level estimates of automatability by a factor of 0.27–0.4, in line with recent
estimates of labor savings even on fully automatable tasks, they have the strange im-



14

plication that full automation would only yield 27–40% labor savings!
By contrast suppose that, as in the model of this paper, the lack of full labor sav-

ings on fully automatable tasks is due to the fact that some labor on task A remains
necessary for the worker to understand how to integrate its output with the not-yet-
automated task B (and indeed that for tasks with sufficiently low automatability, per-
haps it is not worth automating at all, as the authors above assume). Then labor sav-
ings per automatable task will rise to 1 as more tasks become automatable. As AI
advances, the GDP impact of AI will rise, perhaps quickly, to that suggested by a plain
reading of Eloundou et al. or beyond.
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